
Hadoop Traffic Analysis

CSInParallel Project

August 13, 2014

CONTENTS

1 Contents: 2
1.1 Introduction to the Dataset . 2
1.2 Working with Multiple files . 4

i

Hadoop Traffic Analysis,

This module was created for CSInParallel by Jeffrey Lyman in 2014 (JLyman@macalester.edu)

The purpose of this module is to teach students how to analyze datasets distributed over multiple files using the Hadoop
framework. It is assumed that students are already familiar with the basics of hadoop and CSInParallel’s Web Map
Reduce hadoop interface.

The exercises in this module use a dataset from the UK department of Transportation that contains detailed records of
traffic accidents split into three separate files.

The dataset can be obtained from Academic Torrents. More about the source of this public data from the United
Kingdom can be found on its Wikipedia page.

CONTENTS 1

mailto:JLyman@macalester.edu
http://academictorrents.com/details/c7d2d7a91ae3fd0256dd2ba2d7344960cb3c4dbb
http://en.wikipedia.org/wiki/Reported_Road_Casualties_Great_Britain

CHAPTER

ONE

CONTENTS:

1.1 Introduction to the Dataset

1.1.1 The Data

The UK department of Transportation keeps detailed records of all traffic incidents. Fortunately for us they made this
data available to the public in the form of three csv files that contain information about the accidents, casualties, and
vehicles involved.

System-dependent Alert

The path of the dataset shown below may not be the same on your WMR system. It is correct for this WMR
server:
selkie.macalester.edu/wmr

These files are located on wmr in the /shared/traffic folder and are named Accidents7409.csv,
Casualty7409.csv and Vehicles7409.csv respectively.

1.1.2 Working with the Data

Each line in the files contains several fields separated by commas, to access these values, it is necessary to call
key.split(’,’) (or the equivalent in whatever language you’re using) to get an array of values. If you want, you
can turn these values into an object, however it’s faster to simply refer to them by their index

index Accidents7409.csv Casualty7409.csv Vehicles7409.csv
0 Accident Index Accident Index Accident Index
1 Location Easting OSGR Vehicle Reference Vehicle Reference
2 Location Northing OSGR Casualty Reference Vehicle Type
3 Longitude Casualty Class Towing/Articulation
4 Latitude Sex of Casualty Vehicle Maneuver
5 Police Force Age Band of Casualty Vehicle Location Restricted Lane
6 Accident Severity Casualty Severity Junction Location
7 Number of Vehicles Pedestrian Location Skidding/Overturning
8 Number of Casualties Pedestrian Movement Hit Object in Driveway
9 Date Car Passenger Vehicle Leaving Driveway
10 Day of Week Bus/Coach Passenger Hit Object off Driveway
11 Time Pedestrian Road Maintenance Worker 1st Point of Impact

Continued on next page

2

Hadoop Traffic Analysis,

Table 1.1 – continued from previous page
index Accidents7409.csv Casualty7409.csv Vehicles7409.csv

12 Local Authority (District) Casualty Type Was Vehicle Left Hand Drive
13 Local Authority (Highway) Casualty Home Area Type Journey Purpose of Driver
14 1st Road Class Sex of Driver
15 1st Road Number Age Band of Driver
16 Road Type Engine Capacity
17 Speed Limit Propulsion Code
18 Junction Detail Age of Vehicle
19 Junction Control Driver IMD Decile
20 2nd Road Class Driver Home Area Type
21 2nd Road Number
22 Pedestrian Crossing Human Control
23 Pedestrian Crossing Physical Facilities
24 Light Conditions
25 Weather Conditions
26 Road Surface Conditions
27 Special Conditions
28 Carriage Hazards
29 Urban or Rural Area
30 Did Police Officer Attend Scene
31 LSOA of Accident Location

Most of the values are determined by special codes which which can be found in the pages of this spreadsheet

1.1.3 Example Job

Let’s use what we’ve learned to answer a quick question. Between 1974 and 2004 were there more casualties per
incident in rural or urban accidents?

Our mapper will need to emit a key that represents whether the accident was rural or urban and the number of
casualties as the value.

Our reducer will need to sum the casualties for each type of accident and divide them by the total number of
accidents.

Given that the code that tells whether a crash was urban or rural is stored at index 29 of the accident csv and the
number of casualties is stored at index 8 our code looks like this:

1 def mapper(key, value):
2 data = key.split(’,’)
3 casualties = data[8]
4 urbanOrRural = data[29]
5 Wmr.emit(urbanOrRural, casualties)
6

7 def reducer(key, values):
8 count = 0
9 total = 0

10 for value in values:
11 total += int(value)
12 count += 1
13 Wmr.emit(key, total / count)

Note: Does this reducer look familiar?

1.1. Introduction to the Dataset 3

Hadoop Traffic Analysis,

Run this job on wmr using cluster path /shared/traffic/Accidents7904.csv You should get the following
output:

1 1.2805146224316546
2 1.5105844913989401
3 1.4071045576407506
-1 1.3062582787269292

A quick glance at the spreadsheet reveals that 1 stands for Urban, 2 for rural, and 3 for unallocated. -1 means that
neither was reported. It appears that on average rural accidents tend to involve more casualties.

1.2 Working with Multiple files

The sample question from the last section was fairly simple to answer because all of the data could be found in one
file. However data is often split between files, making it harder to process.

Take this question for instance: are taxis more likely to get into crashes on the weekend?

1.2.1 Taxi Crashes

To answer this question we will need to access the day of week data at accidents[10] and the vehicle type data at
vehicles[2] (codes 8 and 108 represent taxis). However those two bits of data are in two separate files so we’ll need
some way to cross reference them. We’ll do that with the accident index stored at accidents[0] and vehicles[0]

This also means that we’ll need to access multiple files during a single job. Luckily WMR makes this easy for us. If
we enter a folder into the cluster path, it will use all the files in that folder has input.

However we still need to be able to tell if a mapper key came from the accidents file or the vehicles file. We can do
this by looking at the length of the data list. The Vehicles file has 21 pieces of information while the Accidents file has
32. Armed with this information we can write a mapper and a reducer that will filter out accidents based on whether
they involved a taxi. Run this code using Cluster Path /shared/traffic

1 def mapper(key, value):
2 data = key.split(’,’)
3 if len(data) == 21: #vehicle data
4 if data[2] in (’8’, ’108’): #codes for taxis
5 Wmr.emit(data[0], "taxi")
6 elif len(data) == 32: #accident data
7 Wmr.emit(data[0], data[10])

This mapper checks to see whether input came from accident data or vehicle data. Then, if it was accident data, it
emits the day of the week that the accident occurred on. If it came from the vehicles data then it emits a message if a
vehicle involved was a taxi.

Our reducer takes that output and emits a list of accident indices and the day of the week that they occurred on.

1 def reducer(key, values):
2 isTaxi = False
3 dayOfWeek = ""
4 for value in values:
5 if value == "taxi":
6 isTaxi = True
7 else:
8 dayOfWeek = value
9 Wmr.emit(dayOfWeek, key)

1.2. Working with Multiple files 4

Hadoop Traffic Analysis,

This works because only one day of week value is emitted per accident index and while there can be more than one
taxi involved in a given crash.

But we’re not done yet. We simply have list of crashes and a list of the days on which they occurred. We still need to
count them.

We can this by using the output of the last job to run a new job. Just hit the use output button at the top or bottom of
the page.

Our mapper will receive days of the week as keys and ones as the values. We just need to feed these straight into a
counting reducer by using what’s known as the identity mapper our code is as follows:

1 def mapper(key, value):
2 Wmr.emit(key, value)

1 def reducer(key, values)
2 count = 0
3 for value in values:
4 count += int(value)
5 emit(key, count)

After submitting the job on WMR we get the following output:

1 693847
2 873422
3 877086
4 890605
5 934161
6 1058859
7 896218

Code 1 is Sunday, code 2 is Monday etc. So it looks like Taxis get into the most accidents on Fridays, a fairly high
number on Saturdays, but very few on Sundays.

1.2.2 Challenges

Use the techniques you’ve learned to answer the following questions, or come up with your own:

• Are male drivers more likely to injure other males? You will need the following fields: Sex of the driver -
Vehicles[14], Sex of casualty - Casualties[4] in both cases 1 is male 2 is female 3 is unknown and -1 is missing
data.

• What is the average severity of a crash in which at least one vehicle overturned? If vehicles[7] = 2, 5, or 4 the
vehicle overturned. The severity of an accident is Accidents[6] and ranges from 1-3, 1 being the most serious.

• Are trucks more deadly than vans?

• Create a graph showing the number of traffic accidents at each hour of the day. If you’re feeling adventurous
separate it out by day and hour.

• Devise some of your own questions to ask of this data.

1.2. Working with Multiple files 5

	Contents:
	Introduction to the Dataset
	Working with Multiple files

