
Pandemic with MPI

CSInParallel Project

March 29, 2016

CONTENTS

1 Infectious Disease 2

2 Program Structure 7
2.1 Program Structure . 7
2.2 Pandemic.c . 7

3 Data Structures 11
3.1 global_t struct . 11
3.2 our_t struct . 12
3.3 const_t struct . 14
3.4 stats_t struct . 14
3.5 display_t struct . 15

4 Initialize Functions 17
4.1 init() . 17
4.2 parse_args() . 18
4.3 init_check() . 19
4.4 find_size() . 19
4.5 allocate_array . 21
4.6 init_array() . 22

5 Infection Functions 26
5.1 find_infected . 26
5.2 share_infected . 27

6 Display Functions 30
6.1 init_display . 30
6.2 share_location . 30
6.3 do_display . 31
6.4 close_display . 31
6.5 throttle . 31

7 Core Functions 33
7.1 move() . 33
7.2 susceptible() . 35
7.3 infected() . 37
7.4 update_days_infected() . 39

8 Finish Functions 40
8.1 show_results() . 40

i

8.2 cleanup . 40

9 Build and Run the Parallel Version 42
9.1 Build . 43
9.2 Run . 43
9.3 To think about . 43

10 Including OpenMP 44
10.1 In Initialize.h . 44
10.2 In Core.h . 45

11 Including CUDA 47
11.1 In Defaults.h . 47
11.2 In Initialize.h . 49
11.3 Replace file Core.h with file CUDA.cu . 51
11.4 Change function calls in Pandemic.c File . 59
11.5 In Finalize.h . 63

ii

Pandemic with MPI,

In this module you will read about how we can model the spread of infectious diseases computationally. We can make
use of distributed computing with message passing to shorten the time needed to model very large populations, which
can be computationally intensive on a single computer. Each section linked below explains both the computational
model and the code, which uses the Message Passing Interface Library, or MPI, to build a distributed processing
solution.

CONTENTS 1

CHAPTER

ONE

INFECTIOUS DISEASE

By Aaron Weeden, Shodor Education Foundation, Inc. 1

Heavily modified by Yu Zhao, Macalester College

Overview

Epidemiology is the study of infectious disease. Infectious diseases are said to be “contagious” among people if they
are transmittable from one person to another. Epidemiologists can use models to assist them in predicting the behavior
of infectious diseases. This module will develop a simple agent-based infectious disease model, develop a parallel
algorithm based on the model, provide a coded implementation for the algorithm, and explore the scaling of the coded
implementation on high performance cluster resources.

Pre-assessment Rubric

This rubric is to gauge students’ initial knowledge and experience with the materials presented in this module. Students
can be asked to rate their knowledge and experience on the following scale and in the following subject areas, bith
before and after they complete this module.

Scale

1. no knowledge, no experience

2. very little knowledge, very little experience

3. some knowledge, some experience

4. a good amount of knowledge, a good amount of experience

5. high level of knowledge, high level of experience

Subject areas

• Disease modeling

• Parallel Algorithm Design

• Parallel Hardware

• MPI programming

• OpenMP programming

• Using a cluster

• Scaling parallel code

1 For original documentation and code developed by Aaron Weeden, please go to original pandemic.

2

http://www.shodor.org/petascale/materials/UPModules/infectiousDisease/

Pandemic with MPI,

The goal of the reading and exercises in this module are to see gains in the above subject areas after completing it.

Model

The model makes certain assumptions about the spread of the disease. In particular, it assumes that the disease spreads
from one person to another person with some “contagiousness factor”, that is, some percent chance that the disease
will be transmitted. The model further assumes that diseases can only be spread from a person who is carrying the
disease, a so-called “infected” person, to a person who is capable of becoming infected, also known as a “susceptible”
person. The disease is assumed to have a certain incubation period, or “duration” – a length of time during which
the disease remains in the person. The disease is also assumed to be transmittable only within a certain distance, or
“infection radius”, from a person capable of transmitting the disease. The model further assumes that each person
moves randomly at most 1 unit in a given direction each day. Finally, the model assumes that after the duration of the
disease within a person, the person can become either “immune” to the disease, incapable of being further infected or
of infecting other people but still able to move around, or “dead”, incapable of being further infected, infecting other
people, or moving.

The description below explains the various entities in the model. Things in underlines are entities, things in bold are
attributes of the entities, and things in italics refer to entities found elsewhere in the description.

(pl. people)

• Has a certain X location and a certain Y location, which tell where it is in the environment.

• Has a certain state, which can be either ‘susceptible’, ‘infected’, ‘immune’, or ‘dead’. States are stored in
the memories of processes and threads. They can also be represented by color (black for susceptible, red for
infected, green for immune, no color for dead), or by a ASCII character (o for susceptible, X for infected, I for
immune, no character for dead).

Disease

• Has a certain duration, which is the number of days in which a person remains infected.

• Has a certain contagiousness factor, which is the likelihood of it spreading from one person to another.

• Has a certain deadliness factor, which is the likelihood that a person will die from the disease. 100 minus this
is the likelihood that a person will become immune to the disease.

Environment

• Has a certain width and height, which bound the area in which people are able to move.

Timer

• Counts the number of days that have elapsed in the simulation.

Thread (pl. threads)

• A computational entity that controls people and performs computations.

• Shares memory with other threads, a space into which threads can read and write data.

3

Pandemic with MPI,

Process (pl. processes)

• A computational entity that controls people and performs computations.

• Has its own private memory, which is a space into which it can read and write data.

• Has a certain rank, which identifies it.

• Communicates with other processes by passing messages, in which it sends certain data.

• Can spawn threads to do work for it.

• Keeps count of how many susceptible, infected, immune, and dead people exist.

Introduction to Parallelism

In parallel processing, rather than having a single program execute tasks in a sequence, the program is split among
multiple “execution flows” executing tasks in parallel, i.e. at the same time. The term “execution flow” refers to
a discrete computational entity that performs processes autonomously. A common synonym is “execution context”;
“flow” is chosen here because it evokes the stream of instructions that each entity processes.

Execution flows have more specific names depending on the flavor of parallelism being utilized. In “distributed
memory” parallelism, in which execution flows keep their own private memories (separate from the memories of other
execution flows), execution flows are known as “processes”. In order for one process to access the memory of another
process, the data must be communicated, commonly by a technique known as “message passing”. The standard of
message passing considered in this module is defined by the “Message Passing Interface (MPI)”, which defines a set
of primitives for packaging up data and sending them between processes.

In another flavor of parallelism known as “shared memory”, in which execution flows share a memory space among
them, the execution flows are known as “threads”. Threads are able to read and write to and from memory without
having to send messages. 2 The standard for shared memory considered in this module is OpenMP, which uses a series
of “pragma”s, or directives for specifying parallel regions of code to be executed by threads. 3

A third flavor of parallelism is known as “hybrid”, in which both distributed and shared memory are utilized. In hybrid
parallelism, the problem is broken into tasks that each process executes in parallel; the tasks are then broken further
into subtasks that each of the threads execute in parallel. After the threads have executed their sub-tasks, the processes
use the shared memory to gather the results from the threads, use message passing to gather the results from other
processes, and then move on to the next tasks.

Parallel Hardware

In order to use parallelism, the underlying hardware needs to support it. The classic model of the computer, first
established by John von Neumann in the 20:math:{}^{th} century, has a single CPU connected to memory. Such an
architecture does not support parallelism because there is only one CPU to run a stream of instructions. In order
for parallelism to occur, there must be multiple processing units running multiple streams of instructions. “Multi-
core” technology allows for parallelism by splitting the CPU into multiple compute units called cores. Parallelism
can also exist between multiple “compute nodes”, which are computers connected by a network. These computers
may themselves have multi-core CPUs, which allows for hybrid parallelism: shared memory between the cores and
message passing between the compute nodes.

Motivation for Parallelism
2 It should be noted that shared memory is really just a form of fast message passing. Threads must communicate, just as processes must, but

threads get to communicate at bus speeds (using the front-side bus that connects the CPU to memory), whereas processes must communicate at
network speeds (Ethernet, infiniband, etc.), which are much slower.

3 Threads can also have their own private memories, and OpenMP has pragmas to define whether variables are public or private.

4

Pandemic with MPI,

We now know what parallelism is, but why should we use it? The three motivations we will discuss here are speedup,
accuracy, and scaling. These are all compelling advantages for using parallelism, but some also exhibit certain limita-
tions that we will also discuss.

“Speedup” is the idea that a program will run faster if it is parallelized as opposed to executed serially. The advantage
of speedup is that it allows a problem to be modeled 4 faster. If multiple execution flows are able to work at the same
time, the work will be finished in less time than it would take a single execution flow.

“Accuracy” is the idea of forming a better solution to a problem. If more processes are assigned to a task, they can
spend more time doing error checks or other forms of diagnostics to ensure that the final result is a better approximation
of the problem that is being modeled. In order to make a program more accurate, speedup may need to be sacrificed.

“Scaling” is perhaps the most promising of the three. Scaling says that more parallel processors can be used to model
a bigger problem in the same amount of time it would take fewer parallel processors to model a smaller problem. A
common analogy to this is that one person in one boat in one hour can catch a lot fewer fish than ten people in ten
boats in one hour.

There are issues that limit the advantages of parallelism; we will address two in particular. The first, communication
overhead, refers to the time that is lost waiting for communications to take place before and after calculations. During
this time, valuable data is being communicated, but no progress is being made on executing the algorithm. The
communication overhead of a program can quickly overwhelm the total time spent modeling the problem, sometimes
even to the point of making the program less efficient than its serial counterpart. Communication overhead can thus
mitigate the advantages of parallelism.

A second issue is described in an observation put forth by Gene Amdahl and is commonly referred to as “Amdahl’s
Law”. Amdahl’s Law says that the speedup of a parallel program will be limited by its serial regions, or the parts of
the algorithm that cannot be executed in parallel. Amdahl’s Law posits that as the number of processors devoted to
the problem increases, the advantages of parallelism diminish as the serial regions become the only part of the code
that take significant time to execute. In other words, a parallel program can only execute as fast as its serial regions.
Amdahl’s Law is represented as an equation as follows:

Speedup = 1
1−P+ P

N

where

• P = the proportion of the program that can be made parallel

• 1 – P = the proportion of the program that cannot be made parallel

• N = the number of processors

Amdahl’s Law provides a strong and fundamental argument against utilizing parallel processing to achieve speedup.
However, it does not provide a strong argument against using it to achieve accuracy or scaling. The latter of these is
particularly promising, as it allows for bigger classes of problems to be modeled as more processors become available
to the program. The advantages of parallelism for scaling are summarized by John Gustafson in Gustafson’s Law,
which says that bigger problems can be modeled in the same amount of time as smaller problems if the processor
count is increased. Gustafson’s Law is represented as follows:

Speedup(N) = N˘(1˘P) ∗ (N˘1)

where

• N = the number of processors

• 1–P = the proportion of the program that cannot be made parallel

4 Note that we refer to “modeling” a problem, not “solving” a problem. This follows the computational science credo that algorithms running on
computers are just one tool used to develop approximate solutions (models) to a problem. Finding an actual solution may involve the use of many
other models and tools.‘

5

Pandemic with MPI,

Amdahl’s Law reveals the limitations of what is known as “strong scaling”, in which the number of processes remains
constant as the problem size increases. Gustafson’s Law reveals the promise of “weak scaling”, in which the number
of processes increases along with the problem size. These concepts will be explored further in Exercise 4.

Code

The code in this module is written in the C programming language, chosen for its ubiquity in scientific computing as
well as its well-defined use of MPI and OpenMP.

The code is attached to this module in pandemic-MPI.zip (there will be a link to download it in the next section).
After unpacking this using an archive utility, use of the code will require the use of a command line terminal. C is a
compiled language, so it must be run through a compiler first to check for any syntax errors in the code. To compile the
code in all its forms of parallelism, enter “make all” in the terminal. For other compilation options, see the Makefile.
To run the program, enter “./pandemic.serial” to run the serial (non-parallel) version, “./pandemic.openmp” to run
the OpenMP version, “mpirun –np <number of processes> pandemic.mpi” to run the MPI version, or “mpirun –np
<number of processes> pandemic.hybrid” to run the hybrid OpenMP/MPI version. Each version of the code can be
run with different options by appending arguments to the end of commands, as in “./pandemic.serial –n 100”. These
options are described below:

• -n <the number of people in the model>

• -i <the number of initially infected people>

• –w <the width of the environment>

• –h <the height of the environment>

• –t <the number of time days in the model>

• –T <the duration of the disease (in days)>

• –c <the contagiousness factor of the disease>

• –d <the infection radius of the disease>

• –D <the deadliness factor of the disease>

• –m <the number of actual microseconds in between days of the model> – this is used to slow or speed up the
animation of the model

To help better understand the code, students can consult the data structures section below.

6

CHAPTER

TWO

PROGRAM STRUCTURE

Download Pandemic-MPI.zip

There are in total 7 files in this program.

File Name Functions
Pandemic.c Holds All the function calls
Defaults.h Data structure and default values
Initialize.h Initialize the runtime environment
Infection.h Find and share all infected persons
Display.h Display everyone’s state and location
Core.h Use serial or OpenMP for core operations
Finalize.h Finalize the run time environment

2.1 Program Structure

The rest of the module will go through each of the code files. We can start with the Pandemic.c file.

2.2 Pandemic.c

At the very beginning of the file, We first include four files that are needed for all versions.

#include "Defaults.h"
#include "Initialize.h"
#include "Infection.h"
#include "Core.h"
#include "Finalize.h"

Then, if we are using display, we include the display code file.

#if defined(X_DISPLAY) || defined(TEXT_DISPLAY)
#include "Display.h"
#endif

2.2.1 main()

This function is the backbone of the whole program. It first initialize all the data structures need.

7

Pandemic with MPI,

Figure 2.1: Overall Program Structurer

2.2. Pandemic.c 8

Pandemic with MPI,

/**** In Defaults.h ****/
struct global_t global;
struct our_t our;
struct const_t constant;
struct stats_t stats;
struct display_t dpy;
/***********************/

Then it will initialize the runtime environment by calling init() function.

/******************** In Initialize.h ********************/
init(&global, &our, &constant, &stats, &dpy, &argc, &argv);
/***/

Then we start the simulation. A for loop wraps around most of the functions, where the each iteration of the loop
represents a day passing.

for(our.current_day = 0; our.current_day <= constant.total_number_of_days;
our.current_day++)

{
}

Inside the for loop, we first find all data related to the infection.

/****** In Infection.h ******/
find_infected(&our);

share_infected(&global, &our);
/****************************/

Then, if display is enabled, we display the infection status. In other words, we display everyone’s location and their
states of infection.

/**************** In Display.h *****************/
#if defined(X_DISPLAY) || defined(TEXT_DISPLAY)

share_display_info(&global, &our);

do_display(&global, &our, &constant, &dpy);

throttle(&constant);

#endif
/***/

After display, we can call four core functions in Core.h* code file.

/******************* In Core.h ******************/
move(&our, &constant);

susceptible(&global, &our, &constant, &stats);

infected(&our, &constant, &stats);

update_days_infected(&our, &constant);
/**/

This is the end of the loop.

Finally, after the loop, we can display the results and finalize the runtime environment.

2.2. Pandemic.c 9

Pandemic with MPI,

/**************** In Finialize.h **************/
show_results(&our, &stats);

cleanup(&global, &our, &constant, &dpy);
/**/

2.2. Pandemic.c 10

CHAPTER

THREE

DATA STRUCTURES

Here is the list of variables and arrays used by the program. Note the naming scheme; variables whose names begin
with “my” are private to the threads that use them. Variables whose names begin with “our” are private to the processes
that use them, but public to the threads within that process. Variables are thus named from a thread’s perspective; “my”
variables are ones that I use, “our” variables are ones that I and the other threads in my process use.

3.1 global_t struct

// All the data needed globally. Holds EVERYONE’s location,
// states and other necessary counters.
struct global_t
{

// people counters
int total_number_of_people;
int total_num_initially_infected;
int total_num_infected;
// locations
int *x_locations;
int *y_locations;
// infected people’s locations
int *their_infected_x_locations;
int *their_infected_y_locations;
// state
char *states;
// MPI related
int total_number_of_processes;

};

total_number_of_people

the total number of all people in the simulation; the sum of people assigned to each process. The value of this variable
can be specified on the command line with the –n option.

total_num_initially_infected

the total number of people who are initially infected; the sum of initially infected people assigned to each process. The
value of this variable can be specified on the command line with the –i option. This is a subset of the total number of
people, so the value of this variable must be smaller or equal to the value for total_number_of_people.

total_num_infected

the total number of infected people; the sum of the number of infected people assigned to each process. This value
changes throughout the course of the simulation.

11

Pandemic with MPI,

x_locations

array, holds the x locations of all of the people; only used if the environment needs to be displayed; otherwise,
our_x_locations is used.

y_locations

array, holds the y locations of all of the people; only used if the environment needs to be displayed; otherwise,
our_y_locations is used.

their_infected_x_locations

array, used in susceptible() function to keep track of the x locations of the infected people for which each process is
responsible.

their_infected_y_locations

array, used in step susceptible() function to keep track of the y locations of the infected people for which each process
is responsible.

states

array, holds the states of all of the people; only used if the environment needs to be displayed; otherwise, our_states
is used.

total_number_of_processes

used to keep track of how many processes are being used. If MPI is disabled, the value of this variable will be 1. If it
is enabled, the value is set in init() function.

3.2 our_t struct

// All the data private to each node: Data being used by
// each process on a node in a cluster when using MPI.
// Each process holds data for location, states and
// other necessary counters for a subset of people.
struct our_t
{

// current day
int current_day;
// MPI related
int our_rank;
// people counters
int our_number_of_people;
int our_num_initially_infected;
// states counters
int our_num_infected;
int our_num_susceptible;
int our_num_immune;
int our_num_dead;
// our people’s locations
int *our_x_locations;
int *our_y_locations;
// our infected people’s locations
int *our_infected_x_locations;
int *our_infected_y_locations;
// our people’s states
char *our_states;
// our people’s infected time

3.2. our_t struct 12

Pandemic with MPI,

int *our_num_days_infected;
};

our_current_day

a loop iterator representing the ID of the current day being simulated by the current process.

our_rank

used to keep track of the rank of the current process. If MPI is disabled, the value of this variable will be 0. If it is
enabled, the value is set in init() function.

our_number_of_people

the number of people for which the current process is responsible. This will be a number less than or equal to the total
number of people. The value is determined in find_size() function.

our_num_initially_infected

the count of initially infected people for which the current process is responsible.

our_num_infected

a count of the number of infected people for which the current process is responsible.

our_num_susceptible

a count of the number of susceptible people for which the current process is responsible.

our_num_immune

a count of the number of immune people for which the current process is responsible.

our_num_dead

a count of the number of dead people for which the current process is responsible.

our_x_locations

array, holds the x locations of all the people for which the current process is responsible.

our_y_locations

array, holds the y locations of all the people for which the current process is responsible.

our_infected_x_locations

array, holds the x locations of all the infected people for which the current process is responsible.

our_infected_y_locations

array, holds the y locations of all the infected people for which the current process is responsible.

our_states

array, holds the states of all the people for which the current process is responsible.

our_num_days_infected

array, used to keep track of the number of days each person has been infected for which the current process is respon-
sible.

3.2. our_t struct 13

Pandemic with MPI,

3.3 const_t struct

// Data being used as constant
struct const_t
{

// environment
int environment_width;
int environment_height;
// disease
int infection_radius;
int duration_of_disease;
int contagiousness_factor;
int deadliness_factor;
// time
int total_number_of_days;
int microseconds_per_day;

};

environment_width

indicates how wide the environment is; used to draw the environment and to make sure people stay within the bounds
of the environment.

environment_height

indicates how high the environment is; used to draw the environment and to make sure people stay within the bounds
of the environment.

infection_radius

see the Introduction Chapter above. The value of this variable can be specified on the command line with the –d option.

duration_of_disease

see the Introduction Chapter above. The value of this variable can be specified on the command line with the –T
option.

contagiousness_factor

see the Introduction Chapter above. The value of this variable can be specified on the command line with the –c option.

deadliness_factor

see the Introduction Chapter above. The value of this variable can be specified on the command line with the –D
option.

total_number_of_days

the total number of days over which to run the simulation.

microseconds_per_day

used to tell how many microseconds to freeze in between frames of animation. The value of this variable can be
specified on the command line with the –m option.

3.4 stats_t struct

// Stats data private to each node: Data being used by
// each process on a node in a cluster when using MPI.
// Each process holds stats data for a subset of people.
struct stats_t

3.3. const_t struct 14

Pandemic with MPI,

{
double our_num_infections;
double our_num_infection_attempts;
double our_num_deaths;
double our_num_recovery_attempts;

};

our_num_infections

used to count the number of actual infections that take place (in which an infected person transmits the disease to a
susceptible person). Only used if the showing of results is enabled (i.e., if the program is to print out final results
from the simulation). Used to determine the actual contagiousness of the disease, which can be compared to the
contagiousness factor by the user.

our_num_infection_attempts

used to count the number of times a susceptible person is within an infection radius of an infected person, even if the
infection fails. Only used if the showing of results is enabled (i.e., if the program is to print out final results from the
simulation). Used to determine the actual contagiousness of the disease, which can be compared to the contagiousness
factor by the user.

our_num_deaths

used to count the number of times a person dies. Only used if the showing of results is enabled (i.e., if the program
is to print out final results from the simulation). Used to determine the actual deadliness of the disease, which can be
compared to the deadliness factor by the user.

our_num_recovery_attempts

used to count the number of times an infected person is able to become immune. Only used if the showing of results is
enabled (i.e., if the program is to print out final results from the simulation). Used to determine the actual deadliness
of the disease, which can be compared to the deadliness factor by the user.

3.5 display_t struct

// Data being used for the X display
struct display_t
{

#ifdef TEXT_DISPLAY
// Array of character arrays for text display
char **environment;
#endif

#ifdef X_DISPLAY
// Declare X-related variables
Display *display;
Window window;
int screen;
Atom delete_window;
GC gc;
XColor infected_color;
XColor immune_color;
XColor susceptible_color;
XColor dead_color;
Colormap colormap;
char *red;
char *green;
char *black;

3.5. display_t struct 15

Pandemic with MPI,

char *white;
#endif

};

environment

2D array, holds an ASCII representation of the environment (see “state” under “Person” in the Introduction Chapter).
This variable is used only when we are using Text Display.

display

Display, display pointer for the connection to the X server

window

Window, variable to holds the window id.

screen

Screen, variable to holds default screen

delete_window

gc

infected_color

immune_color

susceptible_color

dead_color

red

array of char, holds value #FF0000, which is the hex code for color red.

green

array of char, holds value #00FF00, which is the hex code for color green.

black

array of char, holds value #000000, which is the hex code for color black.

white

array of char, holds value #FFFFFF, which is the hex code for color white.

colormap

3.5. display_t struct 16

CHAPTER

FOUR

INITIALIZE FUNCTIONS

4.1 init()

This function will first initialize variables in the constant structure with default values. It will also initialize to-
tal_number_of_people variable, total_num_initially_infected variable and total_num_infected variable. After this,
it will set all the counters inside stats structure to zero, as well as state counters inside global struct.

Before executing the algorithm, the code starts by initializing MPI using

// Each process initializes the distributed memory environment
MPI_Init(&argc, &argv);

We pass the addresses of the arguments to main, argc and argv, so that MPI can strip out anything from the command
line related to MPI, such as mpirun or –np. MPI_Init must be called before any other MPI functions are executed,
and we also want to call it before we parse the rest of the command line arguments in parse_args() function.

Here we see one process figuring out its rank. It does so by calling

#ifdef _MPI
MPI_Comm_rank(MPI_COMM_WORLD, &our->our_rank);

function. This function checks the MPI “world” (the “communicator” of all the MPI processes,
MPI_COMM_WORLD). You pass the address of the variable for the process’s rank to the function as the second
argument using the ampersand (&).

If we only have 1 process total (i.e., if we are not using distributed memory), then the rank of the process will be 0,
which we set in the code as our_rank = 0.

#else
our->our_rank = 0;

17

Pandemic with MPI,

We also see another process figuring out how many processes there are. It does so by calling

#ifdef _MPI
MPI_Comm_size(MPI_COMM_WORLD, &global->total_number_of_processes);

function. Just as with MPI_Comm_rank, you pass the communicator of all the processes and the address of the
variable for the number of processes.

If we have only 1 process total, we set the number of processes by calling total_number_of_processes = 1.

#else
global->total_number_of_processes = 1;

After MPI initialization, init() function will call the following five functions.

init_check(global);
parse_args(global, constant, argc, argv);
allocate_array(global, our, constant, dpy);
init_array(our, constant);
// if use X_DISPLAY, do init_display()
#ifdef X_DISPLAY

init_display(our, constant, dpy);
#endif

4.2 parse_args()

These parameters are specified via command line arguments when the program is run. Otherwise, default values are
used. The code uses getopt function to do this. Type man 3 getopt in a shell if you are interested how it works.

4.2. parse_args() 18

Pandemic with MPI,

4.3 init_check()

This function makes sure that for each process, the total number of initially infected people is less than the total number
of people

The simulation can’t run if there are more initially infected people than there are people. If there are, the code uses the
fprintf function to print an error message to standard error, and it exits the program with exit code -1.

4.4 find_size()

For each process, this function determines the number of people for which it is responsible

Each process will try to take an even split of the number of people. It does so by dividing the number of people by
the total number of processes and throwing away any remainder. Because the variables involved are integers in C, the
throwing away of the remainder is handled automatically in the division

our->our_number_of_people = total_number_of_people / total_number_of_processes;

The last process is responsible for the remainder

// The last process is responsible for the remainder
if(our_rank == total_number_of_processes - 1)
{

our->our_number_of_people += total_number_of_people % total_number_of_processes;
}

4.3. init_check() 19

Pandemic with MPI,

Every person has to be accounted for, so any remainder of the division is assigned to the last process. We can obtain
the remainder by using the modulo operator (%), and we add it to the existing value using the plus-equals operator
(+=):

our->our_number_of_people += total_number_of_people % total_number_of_processes;

We only want the last process to do this, so we surround the code with

if(our_rank == total_number_of_processes - 1)

since the last process has rank N–1, where N is the total number of processes.

Each process determines the number of initially infected people for which it is responsible

our->our_num_initially_infected = total_num_initially_infected
/ total_number_of_processes;

This is the same method used before, but it considers only the infected people.

The last process is responsible for the remainder

our->our_num_initially_infected += total_num_initially_infected
% total_number_of_processes;

This is the same method used before, but it considers only the infected people.

4.4. find_size() 20

Pandemic with MPI,

4.5 allocate_array

At this point we are ready to allocate our arrays, which must be performed before we can start filling the arrays.
Allocating an array means reserving enough space in memory for it; if we don’t reserve the space the program will
assume that it is a zero-length array. The allocation must happen in the “heap” memory, meaning we must allocate
it dynamically (i.e. as the program is running). To allocate memory on the heap, we use the malloc function, which
takes the amount of space that is requested and returns a pointer to the newly allocated memory, which we can then
use as an array. Let’s see an example with the x_locations array:

global->x_locations = (int*)malloc(total_number_of_people * sizeof(int));

Here we see that malloc has taken an argument, total_number_of_people * sizeof(int). This is how we specify that
we want to fill the array with a certain number of integers, namely the amount stored in the total_number_of_people
variable. We also need to specify how big these integers are, for which we use the sizeof(int) function. We then take
the return from malloc and tell the program to “cast” it (i.e. use it) as a pointer to integers, for which we use (int*).
This is then assigned to x_locations, and we can now use x_locations as an array.

For the 2D array environment, we must allocate not only the array itself but also each of the arrays that it contains
(since a 2D array is an array whose elements are arrays). The array has horizontal strips of length environment_width
and vertical strips of length environment_height. We perform the allocation by allocating enough space for the entire
array first using

dpy->environment = (char**)malloc(constant->environment_width *
constant->environment_height * sizeof(char*));

That is, we are allocating enough char*’s for environment_width times environment_height, casting this as a
char** and assigning it to environment. Then we allocate each array within environment, like so:

for(our_current_location_x = 0;
our_current_location_x <= constant->environment_width - 1;
our_current_location_x++)

{
dpy->environment[our_current_location_x] = (char*)malloc(

constant->environment_height * sizeof(char));
}

The number of arrays we need is stored in environment_width, so we loop from 0 to environment_width – 1 and
allocate enough space in each element of environment for environment_height chars, each one of which has size
sizeof(char).

This can be a convoluted process but is necessary for allocating arrays dynamically, which allows us to specify options

4.5. allocate_array 21

Pandemic with MPI,

on the command line (so we don’t have to edit the source code and re-compile each time we want to run a simulation
with different parameters).

4.6 init_array()

This function can be divided into four parts.

The function sets the states of the initially infected people and set the count of its infected people

The function also sets the states of infected people using the our_states array. They fill the first
our_num_initially_infected cells of the array with the INFECTED constant; i.e. they fill in the 0 through
our_num_initially_infected – 1 positions of the array with INFECTED as below:

// Each process spawns threads to set the states of the initially
// infected people and set the count of its infected people
for(my_current_person_id = 0; my_current_person_id

<= our_num_initially_infected - 1; my_current_person_id++)
{

our->our_states[my_current_person_id] = INFECTED;
our->our_num_infected++;

}

The function sets the states of the rest of its people and set the count of its susceptible people

This is similar to last step, but we want to fill the rest of the array (from our_num_initially_infected to
our_number_of_people - 1) with the SUSCEPTIBLE constant, and we want to add 1 to the our_num_susceptible
variable at each iteration of the loop:

// Each process spawns threads to set the states of the rest of
// its people and set the count of its susceptible people
for(my_current_person_id = our_num_initially_infected;

my_current_person_id <= our_number_of_people - 1;
my_current_person_id++)

{
our->our_states[my_current_person_id] = SUSCEPTIBLE;

4.6. init_array() 22

Pandemic with MPI,

our->our_num_susceptible++;
}

The our_states array is now full; the first our_num_initially_infected cells have the INFECTED constant, and the
rest have the SUSCEPTIBLE constant.

The third step is that the function sets random x and y locations for each of its people

Locations of people are stored in the our_x_locations and our_y_locations arrays. To fill these arrays with random
values, we use a for loop and the random function:

// Each process spawns threads to set random x and y locations for
// each of its people
for(my_current_person_id = 0;

my_current_person_id <= our_number_of_people - 1;
my_current_person_id++)

{
our->our_x_locations[my_current_person_id] = random() % constant->environment_width;
our->our_y_locations[my_current_person_id] = random() % constant->environment_height;

}

By calling random with the modulus (%) operator, we can restrict the size of the random number it generates. Since
we cannot have x locations larger than the width of the environment, we call random() % environment_width; to
make sure the x location of each person is less than environment_width. Similarly for the y location and environ-
ment_height.

We are filling the x and y location arrays for all of the people for which the process is responsible, so we loop from 0
to our_number_of_people – 1.

Finally, the function initializes the number of days infected of each of its people to 0

The number of days each person is infected is stored in the our_num_days_infected array, so we loop over all of the
people and fill this array with 0, since the simulation starts at day 0, at which point no days have yet elapsed:

// Each process spawns threads to initialize the number of days
// infected of each of its people to 0
for(my_current_person_id = 0;

my_current_person_id <= our_number_of_people - 1;

4.6. init_array() 23

Pandemic with MPI,

4.6. init_array() 24

Pandemic with MPI,

my_current_person_id++)
{

our->our_num_days_infected[my_current_person_id] = 0;
}

4.6. init_array() 25

CHAPTER

FIVE

INFECTION FUNCTIONS

5.1 find_infected

For each process, this function determines its infected x locations and infected y locations

We have already set the states of the infected people and the positions of all the people, but we need to specifically set
the positions of the infected people and store them in the our_infected_x_locations and our_infected_y_locations ar-
rays. We do this by marching through the our_states array and checking whether the state at each cell is INFECTED.
If it is, we add the locations of the current infected person from the our_x_locations and our_y_locations arrays to the
our_infected_x_locations and our_infected_y_locations arrays. We determine the ID of the current infected person
using the our_current_infected_person variable:

26

Pandemic with MPI,

for(our_person1 = 0; our_person1 <= our->our_number_of_people - 1; our_person1++)
{

if(our->our_states[our_person1] == INFECTED)
{

our->our_infected_x_locations[our_current_infected_person] =
our->our_x_locations[our_person1];
our->our_infected_y_locations[our_current_infected_person] =
our->our_y_locations[our_person1];
our_current_infected_person++;

}
}

5.2 share_infected

First, for each process, this function sends its count of infected people to all the other processes and receives their
counts

// Each process sends its count of infected people to all the
// other processes and receives their counts
MPI_Allgather(&our->our_num_infected, 1, MPI_INT, recvcounts, 1,

MPI_INT, MPI_COMM_WORLD);

This step is handled by the MPI command MPI_Allgather whose arguments are as follows:

• &our_num_infected – the address of the sending buffer (the thing being sent).

• 1 – the count of things being sent.

• MPI_INT – the datatype of things being sent.

• recvcounts – the receive buffer (an array of things being received).

• 1 – the count of things being received.

• MPI_INT – the datatype of things being received.

• MPI_COMM_WORLD – the communicator of processes that send and receive data.

5.2. share_infected 27

Pandemic with MPI,

Once the data has been sent and received, we count the total number of infected people by adding up the values in the
recvcounts array and storing the result in the total_num_infected variable:

global->total_num_infected = 0;
int current_rank;
for(current_rank = 0; current_rank <= total_number_of_processes - 1;

current_rank++)
{

global->total_num_infected += recvcounts[current_rank];
}

Next, for each process, the function sends the x locations of its infected people to all the other processes and receives
the x locations of their infected people

For this send and receive, we need to use MPI_Allgatherv instead of MPI_Allgather. This is because each process
has a varying number of infected people, so it needs to be able to send a variable number of x locations. To do this,
we first need to set up the displacements in the receive buffer; that is, we need to indicate how many elements each
process will send and at what points in the receive array they will appear. We can do this with a displs array, which
will contain a list of the displacements in the receive buffer:

// Each process sends the x locations of its infected people to
// all the other processes and receives the x locations of their
// infected people
MPI_Allgatherv(our->our_infected_x_locations, our->our_num_infected, MPI_INT,

global->their_infected_x_locations, recvcounts, displs,
MPI_INT, MPI_COMM_WORLD);

We are now ready to call the MPI_Allgatherv. Here are its arguments:

• our_infected_x_locations – the send buffer (array of things to send).

• our_num_infected – the count of elements in the send buffer.

• MPI_INT – the datatype of the elements in the send buffer.

• their_infected_x_locations – the receive buffer (array of things to receive).

• recvcounts – an array of counts of elements in the receive buffer

• displs – the list of displacements in the receive buffer, as determined above.

• MPI_INT – the data type of the elements in the receive buffer.

• MPI_COMM_WORLD – the communicator of processes that send and receive data.

Once the command is complete, each process will have the full array of the x locations of the infected people from
each process, stored in the their_infected_x_locations array.

Finally, each process sends the y locations of its infected people to all the other processes and receives the y locations
of their infected people

// Each process sends the y locations of its infected people
// to all the other processes and receives the y locations of their
// infected people
MPI_Allgatherv(our->our_infected_y_locations, our->our_num_infected, MPI_INT,

global->their_infected_y_locations, recvcounts, displs,
MPI_INT, MPI_COMM_WORLD);

The y locations are sent and received just as the x locations are sent and received. In fact, the function calls have
exactly 2 letters difference; the x’s in the Allgatherv from last step. are replaced by y’s in the Allgatherv in this step.

Note that the code will only execute previous two steps if MPI is enabled. If it is not enabled, the code simply
copies the our_infected_x_locations and our_infected_y_locations arrays into the their_infected_x_locations and

5.2. share_infected 28

Pandemic with MPI,

their_infected_y_locations arrays and the our_num_infected variable into the total_num_infected variable.

5.2. share_infected 29

CHAPTER

SIX

DISPLAY FUNCTIONS

6.1 init_display

Rank 0 initializes the graphics display. The code uses X to handle graphics display.

6.2 share_location

If display is enabled, Rank 0 gathers the states, x locations, and y locations of the people for which each process is
responsible

We set up the displs here just as we did in function share_infected().

// Distributed Memory Information
int *recvcounts;
int *displs;
recvcounts = (int*)malloc(total_number_of_processes * sizeof(int));
displs = (int*)malloc(total_number_of_processes * sizeof(int));

// Set up the receive counts and displacements in the
// receive buffer (see the man page for MPI_Gatherv)

30

Pandemic with MPI,

int current_displ = 0;
int current_rank;
for(current_rank = 0; current_rank <= total_number_of_processes - 1;

current_rank++)
{

displs[current_rank] = current_displ;
recvcounts[current_rank] = total_number_of_people / total_number_of_processes;
if(current_rank == global->total_number_of_processes - 1)
{

recvcounts[current_rank] += total_number_of_people
% total_number_of_processes;

}
current_displ += recvcounts[current_rank];

}

Three calls to Gatherv take place for each process to send each of their our_states, our_x_locations, and
our_y_locations arrays. Rank 0 copies these into its states, x_locations, and y_locations arrays, respectively.

MPI_Gatherv(our->our_states, our->our_number_of_people, MPI_CHAR,
global->states, recvcounts, displs, MPI_CHAR, 0, MPI_COMM_WORLD);

MPI_Gatherv(our->our_x_locations, our->our_number_of_people, MPI_INT,
global->x_locations, recvcounts, displs, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Gatherv(our->our_y_locations, our->our_number_of_people, MPI_INT,
global->y_locations, recvcounts, displs, MPI_INT, 0, MPI_COMM_WORLD);

Note that if MPI is not enabled, Rank 0 just does a direct copy of the arrays without using Gatherv.

int my_current_person_id;
for(my_current_person_id = 0; my_current_person_id

<= global->total_number_of_people - 1; my_current_person_id++)
{

global->states[my_current_person_id]
= our->our_states[my_current_person_id];
global->x_locations[my_current_person_id]
= our->our_x_locations[my_current_person_id];
global->y_locations[my_current_person_id]
= our->our_y_locations[my_current_person_id];

}
#endif

}

6.3 do_display

If display is enabled, Rank 0 displays a graphic of the current day

6.4 close_display

If X display is enabled, then Rank 0 destroys the X Window and closes the display

6.5 throttle

In order for better display, we wait between frames of animation.

6.3. do_display 31

Pandemic with MPI,

6.5. throttle 32

CHAPTER

SEVEN

CORE FUNCTIONS

7.1 move()

For of the each process’s people, this function moves them around randomly.

For everyone handled by this process,

for(my_current_person_id = 0; my_current_person_id
<= our->our_number_of_people - 1; my_current_person_id++)

If the person is not dead, then

if(our_states[my_current_person_id] != DEAD)

First, The thread randomly picks whether the person moves left or right or does not move in the x dimension.

The code uses (random() % 3) - 1; to achieve this. (random() % 3) returns either 0, 1, or 2. Subtracting 1 from this
produces -1, 0, or 1. This means the person can move to the right, stay in place (0), or move to the left (-1).

// The thread randomly picks whether the person moves left
// or right or does not move in the x dimension
my_x_move_direction = (random() % 3) - 1;

The thread then randomly picks whether the person moves up or down or does not move in the y dimension. This is
similar to movement in x dimension.

// The thread randomly picks whether the person moves up
// or down or does not move in the y dimension
my_y_move_direction = (random() % 3) - 1;

Next, we need to make sure that the person will remain in the bounds of the environment after moving. We check this
by making sure the person’s x location is greater than or equal to 0 and less than the width of the environment and that
the person’s y location is greater than or equal to 0 and less than the height of the environment. In the code, it looks
like this:

if((our_x_locations[my_current_person_id]
+ my_x_move_direction >= 0) &&

(our_x_locations[my_current_person_id]
+ my_x_move_direction < environment_width) &&

(our_y_locations[my_current_person_id]
+ my_y_move_direction >= 0) &&

(our_y_locations[my_current_person_id]
+ my_y_move_direction < environment_height))

33

Pandemic with MPI,

7.1. move() 34

Pandemic with MPI,

Finally, The thread moves the person

The thread is able to achieve this by simply changing values in the our_x_locations and our_y_locations arrays.

// The thread moves the person
our_x_locations[my_current_person_id] += my_x_move_direction;
our_y_locations[my_current_person_id] += my_y_move_direction;

7.2 susceptible()

For of the each process’s people, this function handles those that are ssusceptible by deciding whether or not they
should be marked infected.

For everyone handled by this process,

for(my_current_person_id = 0; my_current_person_id
<= our->our_number_of_people - 1; my_current_person_id++)

If the person is susceptible,

if(our_states[my_current_person_id] == SUSCEPTIBLE)

For each of the infected people (received earlier from all processes) or until the number of infected people nearby is
1, the thread does the following

for(my_person2 = 0; my_person2 <= total_num_infected - 1
&& my_num_infected_nearby < 1; my_person2++)

If this person is within the infection radius,

if((our_x_locations[my_current_person_id]
> their_infected_x_locations[my_person2] - infection_radius) &&
(our_x_locations[my_current_person_id]
< their_infected_x_locations[my_person2] + infection_radius) &&
(our_y_locations[my_current_person_id]
> their_infected_y_locations[my_person2] - infection_radius) &&
(our_y_locations[my_current_person_id]
< their_infected_y_locations[my_person2] + infection_radius))

then, the function increments the number of infected people nearby

my_num_infected_nearby++;

This is where a large chunk of the algorithm’s computation occurs. Each susceptible person must be computed with
each infected person to determine how many infected people are nearby each person. Two nested loops means
many computations. In this step, the computation is fairly simple, however. The thread simply increments the
my_num_infected_nearby variable.

Note in the code that if the number of infected nearby is greater than or equal to 1 and we have SHOW_RESULTS en-
abled, we increment the our_num_infection_attempts variable. This helps us keep track of the number of attempted
infections, which will help us calculate the actual contagiousness of the disease at the end of the simulation.

// The thread updates stats counter
#ifdef SHOW_RESULTS
if(my_num_infected_nearby >= 1)

stats->our_num_infection_attempts++;
#endif

7.2. susceptible() 35

Pandemic with MPI,

If there is at least one infected person nearby, and a random number less than 100 is less than or equal to the conta-
giousness factor, then

if(my_num_infected_nearby >= 1 && (random() % 100)
<= contagiousness_factor)

Recall that the contagiousness factor is the likelihood that the disease will be spread. We measure this as a number
less than 100. For example, if there is a 30% chance of contagiousness, we use 30 as the value of the contagiousness
factor. To figure out if the disease is spread for any given interaction of people, we find a random number less than
100 and check if it is less than or equal to the contagiousness factor, because this will be equivalent to calculating the
odds of actually spreading the disease (e.g. there is a 30% chance of spreading the disease and also a 30% chance that
a random number less than 100 will be less than or equal to 30).

The thread changes this person state to infected

// The thread changes person1’s state to infected
our_states[my_current_person_id] = INFECTED;

The thread updates the counters

// The thread updates the counters
our->our_num_infected++;
our->our_num_susceptible--;

Note in the code that if the infection succeeds and we have SHOW_RESULTS enabled, we increment the

7.2. susceptible() 36

Pandemic with MPI,

our_num_infections variable. This helps us keep track of the actual number of infections, which will help us calcu-
late the actual contagiousness of the disease at the end of the simulation.

// The thread updates stats counter
#ifdef SHOW_RESULTS
stats->our_num_infections++;
#endif

7.3 infected()

For of the each process’s people, this function to handles those that are infected by deciding whether they should be
marked immune or dead.

For everyone handled by this process,

for(my_current_person_id = 0; my_current_person_id
<= our->our_number_of_people - 1; my_current_person_id++)

If the person is infected and has been for the full duration of the disease, then

if(our_states[my_current_person_id] == INFECTED
&& our_num_days_infected[my_current_person_id] == duration_of_disease)

Note in the code that if we have SHOW_RESULTS enabled, we increment the our_num_recovery_attempts vari-
able. This helps us keep track of the number of attempted recoveries, which will help us calculate the actual deadliness
of the disease at the end of the simulation.

// The thread updates stats counter
#ifdef SHOW_RESULTS

stats->our_num_recovery_attempts++;
#endif

If a random number less than 100 is less than the deadliness factor,

if((random() % 100) < deadliness_factor)

then, the thread changes the person’s state to dead

our_states[my_current_person_id] = DEAD;

and then the thread updates the counters

// The thread updates the counters
our->our_num_dead++;
our->our_num_infected--;

This step is effectively the same as function susceptible, considering deadliness instead of contagiousness. The differ-
ence here is the following step:

if a random number less than 100 is less than the deadliness factor, the thread changes the person’s state to immune

// The thread changes the person’s state to immune
our_states[my_current_person_id] = IMMUNE;

The thread updates the counters

// The thread updates the counters
our->our_num_immune++;
our->our_num_infected--;

7.3. infected() 37

Pandemic with MPI,

7.3. infected() 38

Pandemic with MPI,

If deadliness fails, then immunity succeeds.

Note in the code that if the person dies and we have SHOW_RESULTS enabled, we increment the our_num_deaths
variable. This helps us keep track of the actual number of deaths, which will help us calculate the actual deadliness of
the disease at the end of the simulation.

// The thread updates stats counter
#ifdef SHOW_RESULTS

stats->our_num_deaths++;
#endif

7.4 update_days_infected()

For of the each process’s people, this function to handles those that are infected by increasing the number of days
infected.

For everyone handled by this process,

for(my_current_person_id = 0; my_current_person_id
<= our->our_number_of_people - 1; my_current_person_id++)

If the person is infected,

if(our_states[my_current_person_id] == INFECTED)

then, the function increment the number of days the person has been infected

our_num_days_infected[my_current_person_id]++;

7.4. update_days_infected() 39

CHAPTER

EIGHT

FINISH FUNCTIONS

8.1 show_results()

At the end of the code, if we are choosing to show results, we print out the final counts of susceptible, infected,
immune, and dead people. We also print the actual contagiousness and actual deadliness of the disease. To perform
these two calculations, we use the following code (using the contagiousness as the example):

#ifdef SHOW_RESULTS
printf("Rank %d final counts: %d susceptible, %d infected, %d immune, %d dead \nRank %d actual contagiousness: %f \nRank %d actual deadliness: %f \n",

our->our_rank, our->our_num_susceptible, our->our_num_infected,
our->our_num_immune, our->our_num_dead, our->our_rank,
100.0 * (stats->our_num_infections / (stats->our_num_infection_attempts

== 0 ? 1 : stats->our_num_infection_attempts)),our->our_rank,
100.0 * (stats->our_num_deaths / (stats->our_num_recovery_attempts

== 0 ? 1 : stats->our_num_recovery_attempts)));
#endif

In this code, the ternary operators (? and :) are used to return one value if something is true and another value if
it isn’t. The thing we are checking for truth is our_num_infection_attempts == 0. If this is true, i.e. if we didn’t
attempt any infection attempts at all, then we say there was actually 1 infection attempt (this is to avoid a divide
by zero error). Otherwise, we return the actual number of infection attempts. This value becomes the dividend for
our_num_infections; in other words, we divide the number of actual infections by the number of total infections.
This will give us a value less than 1, so we multiply it by 100 to obtain the actual contagiousness factor of the disease.
A similar procedure is performed to calculate the actual deadliness factor.

8.2 cleanup

If X display is enabled, then Rank 0 destroys the X Window and closes the display

// if use X_DISPLAY, do close_display()
#ifdef X_DISPLAY
close_display(our, dpy);
#endif

Since we allocated our arrays dynamically, we need to release them back to the heap using the free function. We do
this in the reverse order than we used malloc, so environment will come first and x_locations will come last.

// free text display environment
#ifdef TEXT_DISPLAY
int our_current_location_x;
for(our_current_location_x = constant->environment_width - 1;

40

Pandemic with MPI,

our_current_location_x >= 0; our_current_location_x--)
{

free(dpy->environment[our_current_location_x]);
}
free(dpy->environment);
#endif

// free arrays allocated in our struct
free(our->our_num_days_infected);
free(our->our_states);
free(our->our_infected_y_locations);
free(our->our_infected_x_locations);
free(our->our_y_locations);
free(our->our_x_locations);

// free arrays allocated in global struct
free(global->states);
free(global->their_infected_x_locations);
free(global->their_infected_y_locations);
free(global->y_locations);
free(global->x_locations);

Just as we initialized the MPI environment with MPI_Init, we must finalize it with MPI_Finalize(). No MPI functions
are allowed to occur after MPI_Finalize.

#ifdef _MPI
// MPI execution is finished; no MPI calls are allowed after this
MPI_Finalize();

#endif

8.2. cleanup 41

CHAPTER

NINE

BUILD AND RUN THE PARALLEL
VERSION

When you create the executable for this program, you will need to set some flags that are particular for your machine,
particularly if you want to run it with the graphical display, which uses the X11 library. This should work on linux
machines and Mac OS X machines that have X11 installed.

Lines 13-15 in the Makefile, shown below and included with the code, are where you set paths to the X11 library and
include directories. On some linux machines you may not need to set either of these, which is why they are commented
out.

In this case, lines 13 and 15 are commented because rather than seeing the display, we want to start looking at how
the parallel code runs (real code wouldn’t use the display for simulation modeling). When rigging the code to test for
performance, you really want to eliminate most of the output, so we have just left line 15 uncommented to see the final
statistics after the whole simulation is completed.

1 # DESCRIPTION: Makefile for serial codes in C
2 # AUTHOR: Yu Zhao, Macalester College
3 # DATE: Original for Area Under A Curve module, September, 2011.
4 # Modified for Infectious Disease module, November, 2011. by Aaron Weedon
5 # Modified for Infectious Disease module, July, 2013, by Yu Zhao
6

7 # Code prefix
8 PROGRAM_PREFIX=Pandemic
9

10 # Compilers and flags
11 MPICC=mpicc
12

13 #CFLAGS+=-DTEXT_DISPLAY # Uncomment to show text display
14 #CFLAGS+=-DX_DISPLAY -L/usr/X11R6/lib -lX11 # Uncomment to show X display
15 CFLAGS+=-DSHOW_RESULTS # Uncomment to make the program print its results
16

17 # Source files
18 SRCS=$(PROGRAM_PREFIX).c
19

20 # Make targets
21 all: $(PROGRAM_PREFIX)-mpi
22

23 clean:
24 rm -f $(PROGRAM_PREFIX)-mpi
25

26 run:
27 mpirun -machinefile machines -np 6 ./$(PROGRAM_PREFIX)-mpi
28

42

Pandemic with MPI,

29 # Make rules
30 $(PROGRAM_PREFIX)-mpi: $(SRCS)
31 $(MPICC) -o $(PROGRAM_PREFIX)-mpi $(SRCS) $(CFLAGS)

9.1 Build

make

9.2 Run

mpirun -machinefile machines -np 6 ./Pandemic-mpi

Your instructor will provide a machines file for your cluster. You can eliminate the use of the -machinefile machines
option if you are running multiple processes on the same machine.

The default values start with a simulation of approximately 50 people.

To see what elements of the computation you can change, try this:

./Pandemic-mpi -?

It should give you something like this:

/Pandemic-mpi -?

Usage: ./Pandemic-mpi [-n total_number_of_people][-i total_num_initially_infected][-w environment_width][-h environment_height][-t total_number_of_days][-T duration_of_disease][-c contagiousness_factor][-d infection_radius][-D deadliness_factor][-m microseconds_per_day]

Note that these are defined and set in the parse_args() function in Initialize.h.

Now you can experiment running different problem sizes with different numbers of threads, like this:

mpirun -machinefile machines -np 6 ./Pandemic-mpi -n 70000 -m 0
mpirun -machinefile machines -np 8 ./Pandemic-mpi -n 70000 -m 0

9.3 To think about

There are preferable ways to instrument your code to time it, using the MPI function MPI_Wtime(). Investigate how
to use it and update this code to print running times of various sections of the code. What loop takes the most time?

Can you calculate the speedup you get by using varying numbers of processes for a fairly large problem size?

9.1. Build 43

CHAPTER

TEN

INCLUDING OPENMP

Download Pandemic-MPI-OMP.zip

It is really easy to include OpenMP features into existing code we have. All we need to do is to identify all the
functions that could use OpenMP. There are in total 5 functions that could use OpenMP to increase performance. The
first function is the init_array() function in Initialize.h file. The next four functions are all the core functions inside
Core.h file.

10.1 In Initialize.h

10.1.1 init_array()

This function can be divided into four parts: the first part sets the states of the initially infected people and sets the
count of infected people. The second part sets states of the rest of the people and sets the of susceptible people. The
third part sets random x and y locations for each people. The last part initilize the number of days infected of each
people to 0.

Normally, to include OpenMP, all we need is to put #pragma omp parallel in front of each of the for loops. However,
our case is a little tricky. The problem is that we are reducing the counter our_num_infected. Different from most
parallel structure, reduction in OpenMP is pretty easy to implement. We just need to add a reduction literal,

reduction(+:our_num_infected_local)

The problem lies on that the counter we are reducing is inside a structure, namely, the our structure. OpenMP
does not support reduction to structures. Therefore, we solve this problem by first create local instance such as
our_num_infected_local that equals to counter our_num_infected in our struct.

int our_num_infected_local = our->our_num_infected;

we can then, reduce to local instance,

our_num_infected_local++;

Finally, we put local instance back to struct.

our->our_num_infected = our_num_infected_local;

We then use the same reduction method for the second part of the function. The third and Fourth part of the function
does not reduce any counters, which means we don’t need worry about reduction at all.

44

Pandemic with MPI,

10.2 In Core.h

There are four core functions inside Core.h file, and all of them can be parallelized using OpenMP.

10.2.1 move()

This function is easy to parallelize because it does not perform any reduction. However, we need to specify the vari-
ables that is private to each OpenMP threads. current_person_id is iterator that is clearly private. x_move_direction
and y_move_direction are different for every thread, which means they are private as well.

#ifdef _OPENMP
#pragma omp parallel for private(current_person_id, x_move_direction, \

y_move_direction)
#endif

10.2.2 susceptible()

This function is relatively hard to parallelize because it has four counters to reduce. Luckily, we already developed
our way of reducing counters in init_array() function, which means we can use same method in here.

Creating local instances

// OMP does not support reduction to struct, create local instance
// and then put local instance back to struct
int num_infection_attempts_local = stats->num_infection_attempts;
int num_infections_local = stats->num_infections;
int num_infected_local = global->num_infected;
int num_susceptible_local = global->num_susceptible;

OpenMP initialization

#ifdef _OPENMP
#pragma omp parallel for private(current_person_id, num_infected_nearby, \

my_person) reduction(+:num_infection_attempts_local) \
reduction(+:num_infected_local) reduction(+:num_susceptible_local) \
reduction(+:num_infections_local)

#endif

Put local instances back to global struct

// update struct data with local instances
stats->num_infection_attempts = num_infection_attempts_local;
stats->num_infections = num_infections_local;
global->num_infected = num_infected_local;
global->num_susceptible = num_susceptible_local;

10.2.3 infected()

Similar to susceptible() function, we have five counters to reduce in this function.

Creating local instances

// OMP does not support reduction to struct, create local instance
// and then put local instance back to struct
int num_recovery_attempts_local = stats->num_recovery_attempts;

10.2. In Core.h 45

Pandemic with MPI,

int num_deaths_local = stats->num_deaths;
int num_dead_local = global->num_dead;
int num_infected_local = global->num_infected;
int num_immune_local = global->num_immune;

OpenMP initialization

#ifdef _OPENMP
#pragma omp parallel for private(current_person_id) \

reduction(+:num_recovery_attempts_local) reduction(+:num_dead_local) \
reduction(+:num_infected_local) reduction(+:num_deaths_local) \
reduction(+:num_immune_local)

#endif

Put local instances back to global struct

// update struct data with local instances
stats->num_recovery_attempts = num_recovery_attempts_local;
stats->num_deaths = num_deaths_local;
global->num_dead = num_dead_local;
global->num_infected = num_infected_local;
global->num_immune = num_immune_local;

10.2.4 update_days_infected()

We don’t have any reduction in this function, which means that the parallelization is relatively easy.

#ifdef _OPENMP
#pragma omp parallel for private(current_person_id)

#endif

10.2. In Core.h 46

CHAPTER

ELEVEN

INCLUDING CUDA

Download Pandemic-MPI-CUDA.zip

In this chapter, we will include CUDA functions into the pandemic program we developed. Since CUDA only takes
over the program when we execute the core functions, most of the program remain unchanged. However, following
changes are needed for CUDA set up and initialization.

11.1 In Defaults.h

We need to include one extra structure in the Defualts.h file. This structure will include all the pointers used for GPU
device memory and other necessary data, such as CUDA block size and CUDA grid size.

11.1.1 cuda_t struct

// All the data needed for CUDA operation: CUDA needs memory
// pointers and other information on CPU side. As more than
// one function (mainly used by CUDA.cu) need to use these
// data, we decided to use a struct to hold all these data.
struct cuda_t
{

// correspond with their_infected_locations in global struct
int *their_infected_x_locations_dev;
int *their_infected_y_locations_dev;
// correspond with our_infected_locations in our struct
int *our_x_locations_dev;
int *our_y_locations_dev;
// correspond with our_states and our_num_days_infected in our struct
int *our_num_days_infected_dev;
char *our_states_dev;

// some counter variables require atomic operations
// correspond with states counters in our struct
int *our_num_susceptible_dev;
int *our_num_immune_dev;
int *our_num_dead_dev;
int *our_num_infected_dev;

// correspond with variables in stats struct
int *our_num_infections_dev;
int *our_num_infection_attempts_dev;
int *our_num_deaths_dev;

47

Pandemic with MPI,

int *our_num_recovery_attempts_dev;

// the following four variables serve as the intermediate
// variables. we initialized variables in stats struct as
// doubles, but cuda atomic operations works better for
// int. So we cast doubles to int and then cast them back
int our_num_infections_int;
int our_num_infection_attempts_int;
int our_num_deaths_int;
int our_num_recovery_attempts_int;

// size used by cudaMalloc
int our_size;
int their_size;
int our_states_size;

// size used by cuda kernel calls
int numThread;
int numBlock;

};

their_infected_x_locations_dev

pointer, pointed to the memory location on device of array their_infected_x_locations_dev, a copy of
their_infected_x_locations on host memory.

their_infected_y_locations_dev

pointer, pointed to the memory location on device of array their_infected_y_locations_dev, a copy of
their_infected_y_locations on host memory.

our_x_locations_dev

pointer, pointed to the memory location on device of array our_x_locations_dev, a copy of our_x_locations on host
memory.

our_y_locations_dev

pointer, pointed to the memory location on device of array our_y_locations_dev, a copy of our_y_locations on host
memory.

our_num_days_infected_dev

pointer, pointed to the memory location on device of array our_num_days_infected_dev, a copy of
our_num_days_infected on host memory.

our_states_dev

pointer, pointed to the memory location on device of array our_states_dev, a copy of our_states on host memory.

our_num_susceptible_dev

pointer, pointed to the memory location on device of counter our_num_susceptible_dev, a copy of
our_num_susceptible on host memory.

our_num_immune_dev

pointer, pointed to the memory location on device of counter our_num_immune_dev, a copy of our_num_immune
on host memory.

our_num_dead_dev

pointer, pointed to the memory location on device of counter our_num_dead_dev, a copy of our_num_dead on host
memory.

11.1. In Defaults.h 48

Pandemic with MPI,

our_num_infected_dev

pointer, pointed to the memory location on device of counter our_num_infected_dev, a copy of our_num_infeced
on host memory.

our_num_infections_dev

pointer, pointed to the memory location on device of counter our_num_infections_dev, a copy of
our_num_infections on host memory.

our_num_infection_attempts_dev

pointer, pointed to the memory location on device of counter our_num_infection_attempts_dev, a copy of
our_num_infection_attempts on host memory.

our_num_deaths_dev

pointer, pointed to the memory location on device of counter our_num_deaths_dev, a copy of our_num_deaths on
host memory.

our_num_recovery_attempts_dev

pointer, pointed to the memory location on device of counter our_num_recovery_attempts_dev, a copy of
our_num_recovery_attempts on host memory.

our_num_infections_int

int, holds temporary instance of our_num_infections when we cast it into a int.

our_num_infection_attempts_int

int, holds temporary instance of our_num_infection_attempts when we cast it into a int.

our_num_deaths_int

int, holds temporary instance of our_num_deaths when we cast it into a int.

our_num_recovery_attempts_int

int, holds temporary instance of our_num_recovery_attempts when we cast it into a int.

our_size

int, holds the size of any integer arrays inside our_t struct.

their_size

int, holds the size of any integer arrays inside global_t struct.

our_states_size

int, holds the size of any char arrays inside our_t struct.

numThread

int, holds the number of threads per block, or block size.

numBlock

int, holds the number of blocks per grid, or grid size.

11.2 In Initialize.h

Since we are using CUDA, we need to initialize the CUDA runtime environment. To do this, we add another function
in the init() function called cuda_init(). Don’t forget to include the cuda structure in the function parameters.

11.2. In Initialize.h 49

Pandemic with MPI,

int init (struct global_t *global, struct const_t *constant, struct stats_t *stats,
struct display_t *dpy, struct cuda_t *cuda, int *c, char ***v)
cuda_init(global, cuda);

Further, as we want to keep all the CUDA functions in one file, we put cuda_init() inside CUDA.cu file. Therefore,
we need to include this file before we can use any functions inside it.

#include "CUDA.cu" // for cuda_init()

11.2.1 cuda_init()

This function will setup the CUDA runtime environment.

Since we are allocating lots of arrays on the CUDA device memory, we first need to find out the size of each array.
In total we need six arrays, of which their_infected_x_locations_dev and their_infected_y_locations_dev should
be as long as the total_number_of_people, and the rest four arrays should have length as our_number_of_people.
Note that of the four arrays above, our_states_dev is different from the rest because it holds char instead of int, which
means we have to assign different size to it. The following line sets sizes we want.

// initialize size needed for cudamalloc operations
cuda->our_size = sizeof(int) * our->our_number_of_people;
cuda->their_size = sizeof(int) * global->total_number_of_people;
cuda->our_states_size = sizeof(char) * our->our_number_of_people;

After setting up the sizes, we can allocate arrays on the device. Note that all the pointers are already initialized in the
cuda structure.

// arrays in global and our struct
cudaMalloc((void**)&cuda->their_infected_x_locations_dev, cuda->their_size);
cudaMalloc((void**)&cuda->their_infected_y_locations_dev, cuda->their_size);
cudaMalloc((void**)&cuda->our_x_locations_dev, cuda->our_size);
cudaMalloc((void**)&cuda->our_y_locations_dev, cuda->our_size);
cudaMalloc((void**)&cuda->our_states_dev, cuda->our_states_size);
cudaMalloc((void**)&cuda->our_num_days_infected_dev, cuda->our_size);

Besides arrays, we also need in allocate spaces for the eight counters in our structure and stats structure.

// states counters in our struct
cudaMalloc((void**)&cuda->our_num_susceptible_dev, sizeof(int));
cudaMalloc((void**)&cuda->our_num_immune_dev, sizeof(int));
cudaMalloc((void**)&cuda->our_num_dead_dev, sizeof(int));
cudaMalloc((void**)&cuda->our_num_infected_dev, sizeof(int));
#ifdef SHOW_RESULTS
// stats variables in stats struct
cudaMalloc((void**)&cuda->our_num_infections_dev, sizeof(int));
cudaMalloc((void**)&cuda->our_num_infection_attempts_dev, sizeof(int));
cudaMalloc((void**)&cuda->our_num_deaths_dev, sizeof(int));
cudaMalloc((void**)&cuda->our_num_recovery_attempts_dev, sizeof(int));
#endif

After allocating structure, we need to set up the random number generator. Since all the device code are executed on
GPU device instead of on CPU, functions like random() will not work. Therefore, we need to use NVIDIA cuRAND
library to generate all the random numbers. According to the documentation of cuRAND library, the normal sequence
of operations to generate random number for CUDA device can be divided into seven steps. cuda_init() function will
cover three steps, cuda_run() function will cover three steps, and cuda_finish() function will cover the last step.

1. Create a new generator of the desired type with curandCreateGenerator().

11.2. In Initialize.h 50

http://docs.nvidia.com/cuda/curand/index.html

Pandemic with MPI,

// create cuda random number generator
curandCreateGenerator(&gen, CURAND_RNG_PSEUDO_DEFAULT);

2. Set the generator options; for example, use curandSetPseudoRandomGeneratorSeed() to set the seed.

// get time
time(¤t_time);
// generate seed for the rand number generator
curandSetPseudoRandomGeneratorSeed(gen, (unsigned long)current_time);

3. Allocate memory on the device with cudaMalloc().

// array to hold random number
cudaMalloc((void**)&rand_nums, 2 * our->our_number_of_people * sizeof(float));

After generating random numbers, we need to set up block size and grid size for CUDA operations. Since the primary
data type of our program is array, we can initialize only 1-D array for CUDA device functions.

Since the primary test machine for this module is LittleFe, which features NVIDIA ION Graphics (ION2), we set the
block size to be 256 threads per block as the maximum active threads per multiprocessor on ION Graphics (Compute
Capability 1.3) is 512. However, if you have GPU cards that are more advanced (Compute Capability 2.0+), you can
set the block size to 512, 1024 or even 2048.

cuda->numThread = (our->our_number_of_people < 256 ? our->our_number_of_people : 256);

Further, if we have less than 256 people in our simulation, we initialize exactly number of people many of threads.

As for grid size, we decide grid size according to our simulation size. For example, if you have 1000 people in your
simulation, program will initialize 4 blocks.

cuda->numBlock = (our->our_number_of_people+cuda->numThread-1)/cuda->numThread;

11.3 Replace file Core.h with file CUDA.cu

11.3.1 CUDA Global Variable

At any time, use of global variables outside of main() function is discouraged in C programming, mainly because
it is really difficult to handle the scope of the program. However, as we are building a CUDA and MPI hybrid, all
CUDA code need to be compiled with nvcc compiler, which means we need to separate CUDA code from other code.
Normally, we should declare these variables inside cuda_t structure we initialized in main() function, but the problem
is that MPI compiler mpicc or C compiler gcc or icc does not recognize the type curandGenerator_t, which forces us
to declare global variable inside this file, which will eventually compiled by nvcc.

gen

curandGenerator_t, which is effectively a random generator on CUDA device. A generator in CURAND encapsulates
all the internal state necessary to produce a sequence of pseudorandom or quasirandom numbers.

current_time

time_t, variable we use to hold the current time. We will use this as seed.

rand_nums

array, this is a pointer pointed to an array of random float numbers.

11.3. Replace file Core.h with file CUDA.cu 51

https://littlefe.net/parts-v4

Pandemic with MPI,

11.3.2 CUDA Device Functions

Inside Core.h file, we have four core functions for our pandemic simulation. move(), susceptible(), infected() and
update_days_infected. Inside CUDA.cu file, we implemented those four functions with CUDA architecture.

11.3.3 cuda_move()

This is a CUDA implementation of the move() function in core functions chapter.

First, each thread randomly picks whether the person moves left or right or does not move in the x dimension.

// The thread randomly picks whether the person moves left
// or right or does not move in the x dimension
int x_move_direction = (int)(rand_nums[id]*3) - 1;

The code uses (int)(rand_nums[id]*3) - 1; to achieve this. rand_num is a array of random numbers generated before.
All the random numbers in this array are floats between 0 and 1. Then, rand_nums[id]*3 will turn all the floats to
numbers between 0 and 3. After this, we can cast all the floats to int, which eventually will make all the numbers as
either 0, 1 or 2. Finally, we subtract 1 from this to produce -1, 0, or 1. This means the person can move to the right(1),
stay in place (0), or move to the left (-1).

The thread randomly picks whether the person moves up or down or does not move in the y dimension. This is similar
to movement in x dimension.

// The thread randomly picks whether the person moves up
// or down or does not move in the y dimension
int y_move_direction = (int)(rand_nums[id+SIZE]*3) - 1;

Next, we need to make sure the person remain in the bounds of the environment after moving. We check this by
making sure the person’s x location is greater than or equal to 0 and less than the width of the environment and that
the person’s y location is greater than or equal to 0 and less than the height of the environment. In the code, it looks
like this:

if((x_locations_dev[id] + x_move_direction >= 0) &&
(x_locations_dev[id] + x_move_direction < environment_width) &&
(y_locations_dev[id] + y_move_direction >= 0) &&
(y_locations_dev[id] + y_move_direction < environment_height))

Finally, The thread moves the person

// The thread moves the person
x_locations_dev[id] = x_locations_dev[id] + x_move_direction;
y_locations_dev[id] = y_locations_dev[id] + y_move_direction;

11.3.4 cuda_susceptible()

This is a CUDA implementation of the susceptible() function in core functions chapter.

If the person is susceptible,

if(states_dev[id] == SUSCEPTIBLE)

For each of the infected people (received earlier from all processes) or until the number of infected people nearby is 1,

for(i=0; i<=global_num_infected-1 && num_infected_nearby<1; i++)

If this person is within the infection radius,

11.3. Replace file Core.h with file CUDA.cu 52

Pandemic with MPI,

11.3. Replace file Core.h with file CUDA.cu 53

Pandemic with MPI,

if((x_locations_dev[id] > infected_x_locations_dev[i] - infection_radius) &&
(x_locations_dev[id] < infected_x_locations_dev[i] + infection_radius) &&
(y_locations_dev[id] > infected_y_locations_dev[i] - infection_radius) &&
(y_locations_dev[id] < infected_y_locations_dev[i] + infection_radius))

then, the thread increments the number of infected people nearby

num_infected_nearby++;

This is where a large chunk of the algorithm’s computation occurs. Each susceptible person must be computed with
each infected person to determine how many infected people are nearby each person. Two nested loops means
many computations. In this step, the computation is fairly simple, however. The thread simply increments the
num_infected_nearby variable.

Note in the code that if the number of infected nearby is greater than or equal to 1 and we have SHOW_RESULTS
enabled, we increment the num_infection_attempts variable. This helps us keep track of the number of attempted
infections, which will help us calculate the actual contagiousness of the disease at the end of the simulation.

Similar to cuda_move(), we also need random numbers in this function. The difference is that we need integers
between -1 and 1 in cuda_move() function but we need integers between 0 and 100 in this function. We obtain this
random number using

// generate a random number between 0 and 100
int rand_num = (int)(rand_nums[id]*100);

where rand_nums is still an array of random floats between 0 and 1 and we can multiply it with 100 and cast it into a
int.

If there is at least one infected person nearby, and a random number less than 100 is less than or equal to the conta-
giousness factor, then

if(num_infected_nearby >= 1 && rand_num <= contagiousness_factor)

The thread changes person’s state to infected

states_dev[id] = INFECTED;

So far the code is similar to the susceptible() function executed on the CPU end. However, things get trickier from
here. Since every threads need to update counters like num_infected or num_susceptible if someone is infected, we
have racing conditions. In order to handle racing conditions and to maximize performance at the same time, we use
both cuda shared memory and cuda atomic operations to update counters.

11.3. Replace file Core.h with file CUDA.cu 54

Pandemic with MPI,

We use shared memory as temporary arrays to holds counters changed by each thread, then we would reduce this array
to a single number. Finally, we use CUDA atomic operations to add the number back to actual counter.

CUDA shared memory is cache assigned to each multiprocessor. In case some of you are not familiar with the
concept of multiprocessor, you can think of multiprocessor is the physical phase of blocks in CUDA coding. A typical
NVIDIA GPU card with Fermi architecture (perfectly fine if you don’t know what this is) supports maximum 1024
active threads per multiprocessor. This means that you can run 1024 threads concurrently on each multiprocessor. The
reason we usually chose 128, 256 or 512 threads per block is that we want each multiprocessor can host exactly 8, 4
or 2 blocks on it.

However, even if we use 128 threads per block when we launch the device functions, we don’t necessarily get 8 blocks
per multiprocessor. Why? Because each multiprocessor has limited shared memory and registers available. GPU with
Fermi architecture usually have 48KB of shared memory per multiprocessor, which means that if each block uses 8KB
of shared memory, you can only initialize 6 blocks on each multiprocessor. For us, this is less of a concern because
we only allocate four or five (later you will see why is four or five) arrays per block. Even we are using 1024 threads
per block, we need maximum 5 * 1024 * sizeof(int) = 20KB, which is less than half of the shared memory available.

We first need to find out how many counters need atomic operations, in this function, there are four of them:
num_infected_dev, num_susceptible_dev, num_infection_attempts_dev and num_infections_dev. This is im-
portant because we need to allocate enough memory when we invoke the device function calls. Since we have four
counters need atomic operations, we need to allocate four arrays, each having the length of the numbers of threads per
block. The following line declares the shared memory:

/* CUDA shared memory allocation */
extern __shared__ int array[];

This line suggests that we allocated an array of the data type int. However, it does not specify how long the array
should be. Then, inside cuda_susceptible function, the following lines set up the four arrays we use for reduction.

// set up shared memory
int *num_infected = (int*)array;
int *num_susceptible = (int*)&num_infected[numThread];
#ifdef SHOW_RESULTS
int *num_infection_attempts = (int*)&num_susceptible[numThread];
int *num_infections = (int*)&num_infection_attempts[numThread];
#endif

we set the pointer of the first array as the pointer of the shared memory array. Then, we set the pointer of the second
array as the pointer exactly numThread away from the pointer of the first array. We are essentially dividing the initial
shared memory array into four equal sized arrays.

After shared memory setup, we need to reset the shared memory. So each thread set its corresponding shared memory
elements to zero at the very beginning of the function.

// reset the shared memory
num_infected[blockId] = 0;
num_susceptible[blockId] = 0;
#ifdef SHOW_RESULTS
num_infection_attempts[blockId] = 0;
num_infections[blockId] = 0;
#endif

Again this is very important. Shared memory will not clear itself after usage, and failing to clear shared memory
before usage usually meaning you are starting from what ever values the shared memory is left with from last CUDA
operations.

When we are updating counters, instead of adding one to or subtracting one from the actual counter located on GPU
device, in this case the num_infected_dev or num_susceptible_devcounter, we add one to or subtract one from the
thread’s corresponding array elements.

11.3. Replace file Core.h with file CUDA.cu 55

Pandemic with MPI,

#ifdef SHOW_RESULTS
num_infection_attempts[blockId]++;
#endif
num_infected[blockId]++;
num_susceptible[blockId]--;
#ifdef SHOW_RESULTS
num_infections[blockId]++;
#endif

Finally, we need to add up the values in each array to obtain the final result. We do this using CUDA binary tree
reduction. This is the official way to perform reduction operations in CUDA. The basic idea is that you create a half
point on the array, use the first half thread to add the values of second half thread. This means that the array shrinks
to one half of its original size. Then you can do another reduction, which will shrinks the array to one fourth of its
original size. When the operation is done, the correct sum is stored at the first element of the array.The following is
the implementation:

i = numThread/2;
while (i != 0) {

if (blockId < i){
num_infected[blockId] += num_infected[blockId + i];
num_susceptible[blockId] += num_susceptible[blockId + i];
#ifdef SHOW_RESULTS
num_infection_attempts[blockId] += num_infection_attempts[blockId + i];
num_infections[blockId] += num_infections[blockId + i];
#endif

}
__syncthreads();
i /= 2;

}

As you probably already see, one limitation of this operation is that the array size has to be the power of 2, which
essentially meaning that the block size should be power of 2 as well. If we are dealing with problem size as large
as tens of thousands even millions, this won’t hurt us because we are always initializing 128, 256, 512 or even 1024
threads per block. However, if we are dealing with problem size as small as 50, things gets a little bit tricker.

Therefore, we put a if statement that checks whether the size of the block is power of 2 before we do any reduction
operations. Such as:

if(((numThread!=0) && !(numThread & (numThread-1)))){

if we indeed do not have some power of 2 many of threads in a block, we can use the first thread of the block to add
all other entries in the array to the first element.

if(blockId == 0) {
for(i=1; i<numThread; i++){

num_infected[0] += num_infected[i];
num_susceptible[0] += num_susceptible[i];
#ifdef SHOW_RESULTS
num_infection_attempts[0] += num_infection_attempts[i];
num_infections[0] += num_infections[i];
#endif

}
}

The good news is that when we run into this problem, normally means that we are dealing with a very small problem
size, which should not affect the performance significantly. Notice that we could use the first thread to add up the
values even if we have 128 or 256 threads per block, but the reduction takes 127 or 255 steps. However, the binary
tree reduction takes 7 or 8 steps to do the same. This will make our program run much faster.

11.3. Replace file Core.h with file CUDA.cu 56

Pandemic with MPI,

Finally, the first thread update the acutal counter with the first value of the array. However, we still face racing
condition because more than one block could be updating the actual counter at the same time. CUDA designs functions
like atomicAdd to handle situations like this, it can slow down your program significantly if you use atomicAdd too
much, but since we are doing this once per block per counter, we do not suffer too much from performance loss.

if(blockId == 0) {
atomicAdd(num_infected_dev, num_infected[0]);
atomicAdd(num_susceptible_dev, num_susceptible[0]);
#ifdef SHOW_RESULTS
atomicAdd(num_infection_attempts_dev, num_infection_attempts[0]);
atomicAdd(num_infections_dev, num_infections[0]);
#endif

Note in the code that if the infection succeeds and we have SHOW_RESULTS enabled, we increment the
num_infections_dev variable. This helps us keep track of the actual number of infections, which will help us calculate
the actual contagiousness of the disease at the end of the simulation.

11.3.5 cuda_infected()

This is a CUDA implementation of the infected() function in core functions chapter.

If the person is infected and has been for the full duration of the disease, then

if(states_dev[id] == INFECTED && num_days_infected_dev[id] == duration_of_disease)

Note in the code that if we have SHOW_RESULTS enabled, we increment the num_recovery_attempts_dev vari-
able. This helps us keep track of the number of attempted recoveries, which will help us calculate the actual deadliness
of the disease at the end of the simulation.

#ifdef SHOW_RESULTS
num_recovery_attempts[blockId]++;
#endif

After this, if a random number less than 100 is less than the deadliness factor, then

// generate a random number between 0 and 100
int rand_num = (int)(rand_nums[id]*100);

The thread changes the person’s state to dead

// The thread changes the person’s state to dead
states_dev[id] = DEAD;

11.3. Replace file Core.h with file CUDA.cu 57

Pandemic with MPI,

and then the thread updates the counters

// The thread updates the counters
num_dead[blockId]++;
num_infected[blockId]--;
#ifdef SHOW_RESULTS
num_deaths[blockId]++;
#endif

This step is effectively the same as function susceptible, considering deadliness instead of contagiousness. The differ-
ence here is the following step:

if a random number less than 100 is less than the deadliness factor, the thread changes the person’s state to immune

// The thread changes the person’s state to immune
states_dev[id] = IMMUNE;

and then thread updates the counters

// The thread updates the counters
num_immune[blockId]++;
num_infected[blockId]--;

If deadliness fails, then immunity succeeds.

11.3. Replace file Core.h with file CUDA.cu 58

Pandemic with MPI,

Note in the code that if the person dies and we have SHOW_RESULTS enabled, we increment the num_deaths_dev
variable. This helps us keep track of the actual number of deaths, which will help us calculate the actual deadliness of
the disease at the end of the simulation.

Note that the reduction process is the same as the susceptible_cuda() function, which involves shared memory reduc-
tion and CUDA atomic operations. The only difference is that we have five counters to reduce instead of four. This
will be reflected when we assign shared memory space for each block.

11.3.6 cuda_update_days_infected()

This is the CUDA implementation of the update_days_infected() function in core functions chapter.

If the person is infected, then

if(states_dev[id] == INFECTED)

Increment the number of days the person has been infected

// Increment the number of days the person has been infected
num_days_infected_dev[id]++;

11.4 Change function calls in Pandemic.c File

Since we are not using core functions in Core.h file and we are using device functions on CUDA device, we need to
change function calls in main() function.

Before changing function calls, we first need to include Cuda.cu file before we can use any of the functions in it.

#include "Infection.h"
#include "CUDA.cu"
#include "Finalize.h"

Then we need to create a cuda structure.

struct cuda_t cuda;

Finally, we replace the four core function calls with a single function call. Why only one function call? Because
calling a CUDA function is more complicated than calling a normal function, and we want to keep all the CUDA code
together in the same file. Therefore, we created a cuda_run() function.

11.4. Change function calls in Pandemic.c File 59

Pandemic with MPI,

11.4.1 cuda_run()

This function will execute the CUDA device functions.

We first use cudaMemcpy() to copy data on host memory to GPU device memory. Since all of the code only performs
one day’s simulation, we need to put cuda_run() function inside a loop. One could call all the cudaMemcpy()
functions in each iteration, or we could divide them into two categories, those that requires constantly communicating
with CPU and those who do not.

After careful examination of the code, it is not hard to find out that some functions, especially MPI functions, on host
end need infected_x_locations and infected_y_locations to share infected information to all other nodes. They also
need these arrays to do display. Therefore, in every iteration, we need to copy these two arrays to GPU device and
copy then back to host after execution. However, other arrays or counters can reside on card from start to finish without
re-copy from host to GPU device. Therefore, we implement cudaMemcpy() functions in the following fashion,

// copy infected locations to device in EVERY ITERATION
cudaMemcpy(cuda->their_infected_x_locations_dev, global->their_infected_x_locations, cuda->their_size, cudaMemcpyHostToDevice);
cudaMemcpy(cuda->their_infected_y_locations_dev, global->their_infected_y_locations, cuda->their_size, cudaMemcpyHostToDevice);

// copy other information to device only in FIRST ITERATION
// we don’t need to copy these information every iteration
// becuase they can be reused in each iteration without any
// process at the host end.
if(our->current_day == 0){

// copy arrays in our struct
cudaMemcpy(cuda->our_x_locations_dev, our->our_x_locations, cuda->our_size, cudaMemcpyHostToDevice);
cudaMemcpy(cuda->our_y_locations_dev, our->our_y_locations, cuda->our_size, cudaMemcpyHostToDevice);
cudaMemcpy(cuda->our_states_dev, our->our_states, cuda->our_states_size, cudaMemcpyHostToDevice);
cudaMemcpy(cuda->our_num_days_infected_dev, our->our_num_days_infected, cuda->our_size, cudaMemcpyHostToDevice);
// copy states counters in our struct
cudaMemcpy(cuda->our_num_susceptible_dev, &our->our_num_susceptible, sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(cuda->our_num_immune_dev, &our->our_num_immune, sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(cuda->our_num_dead_dev, &our->our_num_dead, sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(cuda->our_num_infected_dev, &our->our_num_infected, sizeof(int), cudaMemcpyHostToDevice);

#ifdef SHOW_RESULTS
// variables in stats data are initialized as doubles, yet CUDA
// atomic operations prefer integer than doubles. Therefore, we
// cast doubles to integer before the cudaMemcpy operations.
cuda->our_num_infections_int = (int)stats->our_num_infections;
cuda->our_num_infection_attempts_int = (int)stats->our_num_infection_attempts;
cuda->our_num_deaths_int = (int)stats->our_num_deaths;
cuda->our_num_recovery_attempts_int = (int)stats->our_num_recovery_attempts;
// copy stats variables in stats struct
cudaMemcpy(cuda->our_num_infections_dev, &cuda->our_num_infections_int, sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(cuda->our_num_infection_attempts_dev, &cuda->our_num_infection_attempts_int, sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(cuda->our_num_deaths_dev, &cuda->our_num_deaths_int, sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(cuda->our_num_recovery_attempts_dev, &cuda->our_num_recovery_attempts_int, sizeof(int), cudaMemcpyHostToDevice);
#endif

}

where if(our->current_day == 0) makes sure that most of the data only gets copied in the first iteration, instead of in
every iteration.

Another thing you probably noticed is that we cast stats counters to int before sending them to the GPU device memory.

cuda->our_num_infections_int = (int)stats->our_num_infections;
cuda->our_num_infection_attempts_int = (int)stats->our_num_infection_attempts;
cuda->our_num_deaths_int = (int)stats->our_num_deaths;

11.4. Change function calls in Pandemic.c File 60

Pandemic with MPI,

cuda->our_num_recovery_attempts_int = (int)stats->our_num_recovery_attempts;

This is because that variables in stats structure are initialized as doubles, but CUDA atomic operations prefer integer.
Since we always perform integer operations on stats counters (either add one or subtract one), we can first cast them
into int, and we can later cast them back to double after device function’s execution.

After the copying the data, we need to generate the random numbers. Recall that we performed the first three steps of
the seven steps CUDA random number generation process, the next step, or the fourth step is:

4. Generate random numbers with curandGenerate() or another generation function.

curandGenerateUniform(gen, rand_nums, 2 * our->our_number_of_people);

Notice that we are generating twice many of total people number of random numbers. This is because the next device
function call is cuda_move(), which moves every person in both x direction and y direction.

Then, we can call device functions from host:

// execute device code on updating people’s movement
int environment_width = constant->environment_width;
int environment_height = constant->environment_height;
cuda_move<<<cuda->numBlock, cuda->numThread>>>(cuda->our_states_dev,

cuda->our_x_locations_dev, cuda->our_y_locations_dev, DEAD,
environment_width, environment_height, rand_nums, our->our_number_of_people);

// Sync Threads
cudaThreadSynchronize();

// generate our_number_of_people many of randome numbers.
curandGenerateUniform(gen, rand_nums, our->our_number_of_people);

// execute device code on susceptible people
int infection_radius = constant->infection_radius;
int contagiousness_factor = constant->contagiousness_factor;
int total_num_infected = global->total_num_infected;
cuda_susceptible<<<cuda->numBlock, cuda->numThread, 4*cuda->numThread*sizeof(int)>>>(

cuda->our_states_dev, cuda->our_x_locations_dev, cuda->our_y_locations_dev,
cuda->their_infected_x_locations_dev, cuda->their_infected_y_locations_dev,
cuda->our_num_infected_dev, cuda->our_num_susceptible_dev,
cuda->our_num_infection_attempts_dev, cuda->our_num_infections_dev,
rand_nums, total_num_infected, infection_radius,
contagiousness_factor, SUSCEPTIBLE, INFECTED);

// Sync Threads
cudaThreadSynchronize();

// generate our_number_of_people many of randome numbers.
curandGenerateUniform(gen, rand_nums, our->our_number_of_people);

// execute device code on infected people
int duration_of_disease = constant->duration_of_disease;
int deadliness_factor = constant->deadliness_factor;
cuda_infected<<<cuda->numBlock, cuda->numThread, 5*cuda->numThread*sizeof(int)>>>(

cuda->our_states_dev, cuda->our_num_days_infected_dev,
cuda->our_num_recovery_attempts_dev, cuda->our_num_deaths_dev,
cuda->our_num_infected_dev, cuda->our_num_immune_dev,
cuda->our_num_dead_dev, duration_of_disease, deadliness_factor,
IMMUNE, DEAD, INFECTED, rand_nums);

// Sync Threads
cudaThreadSynchronize();

// execute device code to update infected days

11.4. Change function calls in Pandemic.c File 61

Pandemic with MPI,

cuda_update_days_infected<<<cuda->numBlock, cuda->numThread>>>(
cuda->our_states_dev, cuda->our_num_days_infected_dev, INFECTED);

// Sync Threads
cudaThreadSynchronize();

Most of the device function calls are straight forward, however, two things needed to be pointed out. First is that we
perform the 5th step and 6th step of CUDA random number generation process in between, which are

5. Use the results.

6. If desired, generate more random numbers with more calls to curandGenerate().

Another thing is that when calling cuda_susceptible() and cuda_infected() functions, we passed a third argument
other than numThread and numBlock to device function.

cuda_susceptible<<<cuda->numBlock, cuda->numThread, 4*cuda->numThread*sizeof(int)>>>(
cuda_infected<<<cuda->numBlock, cuda->numThread, 5*cuda->numThread*sizeof(int)>>>(

The third parameter is the size of the shared memory, which depends on how many counters we need to reduce in each
function.

Finally, we need to copy GPU device data back to host. However, just like when we copy data from host to GPU device,
we need to differentiate data that needs to be copied in every iteration and those that needs to be copied only once.
In this case, we need to copy arrays x_locations, y_locations and states back to host memory. This is because MPI
functions will need them to perform Allgather() and Allgatherv() operations. We also copied counter num_infected
back because we need it in other functions as well.

As for other arrays or counters, we can copy them back in the last iteration. Notice that we never copy
num_infected_days array back to host memory, this is because non of the host functions need this array.

// copy our locations, our states and our_num_infected back to host
// in EVERY ITERATION
cudaMemcpy(our->our_x_locations, cuda->our_x_locations_dev, cuda->our_size, cudaMemcpyDeviceToHost);
cudaMemcpy(our->our_y_locations, cuda->our_y_locations_dev, cuda->our_size, cudaMemcpyDeviceToHost);
cudaMemcpy(our->our_states, cuda->our_states_dev, cuda->our_states_size, cudaMemcpyDeviceToHost);
cudaMemcpy(&our->our_num_infected, cuda->our_num_infected_dev, sizeof(int), cudaMemcpyDeviceToHost);

// copy other information back to host only in LAST ITERATION
// we only copy the counters back for results calculation.
// we don’t need to copy our_num_days_infected back.
if(our->current_day == constant->total_number_of_days){

// copy states counters in our struct
cudaMemcpy(&our->our_num_susceptible, cuda->our_num_susceptible_dev, sizeof(int), cudaMemcpyDeviceToHost);
cudaMemcpy(&our->our_num_immune, cuda->our_num_immune_dev, sizeof(int), cudaMemcpyDeviceToHost);
cudaMemcpy(&our->our_num_dead, cuda->our_num_dead_dev, sizeof(int), cudaMemcpyDeviceToHost);

#ifdef SHOW_RESULTS
// copy stats variables in stats struct
cudaMemcpy(&cuda->our_num_infections_int, cuda->our_num_infections_dev, sizeof(int), cudaMemcpyDeviceToHost);
cudaMemcpy(&cuda->our_num_infection_attempts_int, cuda->our_num_infection_attempts_dev, sizeof(int), cudaMemcpyDeviceToHost);
cudaMemcpy(&cuda->our_num_deaths_int, cuda->our_num_deaths_dev, sizeof(int), cudaMemcpyDeviceToHost);
cudaMemcpy(&cuda->our_num_recovery_attempts_int, cuda->our_num_recovery_attempts_dev, sizeof(int), cudaMemcpyDeviceToHost);
// cast interger back to double after the cudaMemcpy operations.
stats->our_num_infections = (double)cuda->our_num_infections_int;
stats->our_num_infection_attempts = (double)cuda->our_num_infection_attempts_int;
stats->our_num_deaths = (double)cuda->our_num_deaths_int;
stats->our_num_recovery_attempts = (double)cuda->our_num_recovery_attempts_int;
#endif

}

11.4. Change function calls in Pandemic.c File 62

Pandemic with MPI,

11.5 In Finalize.h

After the CUDA operations, we need to perform clean up operations, such as free memory allocated on device and
destroy random number generator. All these operations are packed in the cuda_finish() function in the CUDA.cu
file. However, we still need to call this function from somewhere. We decided to call this function inside cleanup()
function in Finalize.h file.

Just like modifying Initialize.h, we first need to include CUDA.cu file,

#include "CUDA.cu" // for cuda_finish()

Then we can call the cuda_finish() function

cuda_finish(cuda);

11.5.1 cuda_finish()

This function will finish the CUDA environment.

After allocating all the arrays and counters on GPU device memory, we need to free them.

// free the memory on the GPU
// arrays in global and our struct
cudaFree(cuda->their_infected_x_locations_dev);
cudaFree(cuda->their_infected_y_locations_dev);
cudaFree(cuda->our_x_locations_dev);
cudaFree(cuda->our_y_locations_dev);
cudaFree(cuda->our_states_dev);
cudaFree(cuda->our_num_days_infected_dev);
// states counters in our struct
cudaFree(cuda->our_num_susceptible_dev);
cudaFree(cuda->our_num_immune_dev);
cudaFree(cuda->our_num_dead_dev);
cudaFree(cuda->our_num_infected_dev);

#ifdef SHOW_RESULTS
// stats variables in stats struct
cudaFree(cuda->our_num_infections_dev);
cudaFree(cuda->our_num_infection_attempts_dev);
cudaFree(cuda->our_num_deaths_dev);
cudaFree(cuda->our_num_recovery_attempts_dev);
#endif

Further, the last step of CUDA random number generation process is:

7. Clean up with curandDestroyGenerator().

// array to hold random number
cudaFree(rand_nums);
// destroy cuda random number generator
curandDestroyGenerator(gen);

Hitting the next links takes you from one chapter to another and previous takes you back one chapter.

11.5. In Finalize.h 63

	Infectious Disease
	Program Structure
	Program Structure
	Pandemic.c

	Data Structures
	global_t struct
	our_t struct
	const_t struct
	stats_t struct
	display_t struct

	Initialize Functions
	init()
	parse_args()
	init_check()
	find_size()
	allocate_array
	init_array()

	Infection Functions
	find_infected
	share_infected

	Display Functions
	init_display
	share_location
	do_display
	close_display
	throttle

	Core Functions
	move()
	susceptible()
	infected()
	update_days_infected()

	Finish Functions
	show_results()
	cleanup

	Build and Run the Parallel Version
	Build
	Run
	To think about

	Including OpenMP
	In Initialize.h
	In Core.h

	Including CUDA
	In Defaults.h
	In Initialize.h
	Replace file Core.h with file CUDA.cu
	Change function calls in Pandemic.c File
	In Finalize.h

