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CONTEXT OF MAP-REDUCE
COMPUTING




• The use of LISP’s map and reduce functions to solve computational  problems probably  dates from the 1960s –
very early in the history of programming languages

• In 2004, Google published their adaptation of the map-reduce strategy for data-intensive scalable computing (DISC) on large clusters. Their implementation,  called MapReduce, incorporates features automatically to split up enormous (e.g., multiple  petabytes) data sets, schedule the mapper and reducer processes, arrange for those processes always  to operate on local data for performance efficiency,  and recover from faults such as computers or racks crashing.

• MapReduce, together with the page rank algorithm,  gave Google the competitive combination it needed to become the most popular search engine (approximately  2/3 of the market at present).  Google proceeded to apply map-reduce techniques to everything from ad placement to maps and document services.

• Google’s MapReduce is proprietary software. But Yahoo! created the Hadoop implementation of this map- reduce strategy for clusters as an Apache Software Foundation open-source project.  Consequently, Hadoop is used not only at Yahoo!, but at numerous other web service companies, and is available for use at colleges and universities.

• Future systems: (1) Strategies such as map-reduce that enable programmers  to provide relatively simple code segments and reuse code for synchronization, fault tolerance, etc., are a target for forthcoming  systems (View from Berkeley, 2006). (2) Future systems are likely to consist of multiple heterogeneous cores, programmed using functional programming techniques (Michael Wrinn, Intel, keynote speech at SIGCSE 2010).
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EXAMPLE: WEBMAPREDUCE USING
SCHEME LANGUAGE




• WebMapReduce (WMR) is a strategically  simplified  interface for performing map-reduce computing devel- oped by students from St. Olaf College. While initially supporting Scheme, the platform  currently supports several high-level  languages, including  Python, C++, and Java.

• Wmr_scm.pdf  includes specs  for the functions provided in this Scheme  WMR interface. 	download
Wmr_scm.pdf

• This implementation of the Scheme interface for entering mappers and reducers uses an iterator  for providing values in a reducer. Each call of a reducer  receives all the key-value pairs for a particular  key, and the two arguments for that reducer are that key and an iterator for obtaining the values.

Iterator - an (object-oriented  programming)  object that enables a programmer to obtain each value in a collection  as a sequence of values, encapsulating the internal representation of that collection. We may visualize  an iterator as a “dispenser”  of values, providing  one value at a time until all are exhausted.

• Iterators are used to provide  reducer values because when there are very many key-value  pairs, the total size of the collection of values may exceed the size of main memory.

• As the spec indicates, the second argument of a reducer  is a WmrIterator object (we’ll call it iter), and that object iter has two methods:

– The call (iter  ’has-next) returns true if a next element exists, false otherwise.

– The call (iter  ’get-next) delivers the next element from the iterator, and advances that iterator (so a next call to the iterator will return a fresh value, if available); this call returns false if there is no next value.
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WEBMAPREDUCE IN VARIOUS
LANGUAGES




The following subsections include the word count mapper and reducer implementations  for WMR in several languages:


3.1 Scheme


Word count for WMR in Scheme language (spec is found on Wmr_scm.pdf)


3.1.1 mapper

(define  helper
(lambda  (lis) ; a  list of strings
(cond
((null? lis) #t)
;; at least one  element in  lis
(else  (wmr-emit  (car  lis) "1") (helper  (cdr  lis))))))

(define  mapper
(lambda  (key  value)
(helper  (wmr-split  key))))



3.1.2 reducer

(define  loop
(lambda  (key  iter ct) ; a  key,value iterator in its  current state, and
; subtotal so  far
(cond
((iter ’has-next)
(loop  key  iter (+  ct (string->number  (iter ’get-next)))))
;; assert --  no  more  input  values to  add
(else  (wmr-emit  key  (number->string  ct))))))

(define  reducer
(lambda  (key  iter) (loop  key  iter 0)))
 (
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Note: For this WMR interface for Scheme (see spec for details):

• As indicated before, the mapper and reducer in this Scheme interface are functions.

• String manipulation functions are primitive in Scheme, so a library  function  split is provided for this interface that allows one to specify delimiters by a regular-expression  pattern.  Type conversion is provided in Scheme through convenient (though long-named) functions number->string and string->number.

• We use Scheme-style objects as implemented  at St. Olaf for the iterator for a reducer, as described  above.



3.2 C++


Word count for WMR in C++ language (C++ style iterators, spec is found on Wmr_cpp.pdf)


3.2.1 mapper

class Mapper
{
public:
void   mapper(string key, string  value)
{
char   delim =  ’ ’;
vector splits  =  Wmr::split(key,  delim);

for (unsigned  int i =  0;  i <  splits.size(); ++i)
{
Wmr::emit(splits.at(i),  "1");
}
}
};


3.2.2 reducer

class  Reducer
{
public:
void   reducer(string  key, WmrIterator iter)
{
long   count =  0;
while (iter !=  WmrIterator::end())
{
count +=  Wmr::strToLong(*iter++);
}

Wmr::emit(key,  Wmr::longToStr(count));
}
};
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for this WMR interface for C++ (see spec for details):



• The mapper and reducer are methods of classes Mapper  and Reducer, respectively.

• Strings are split using the method Wmr::split() of a (predefined)  library class Wmr. Rather than splitting on arbitrary regular expressions, the (required) second argument of Wmr::split() is a string of characters, any one of which  counts as a delimiter.  Type conversion between numbers and strings is not convenient in C++, so helper methods are provided.

• C++-style  iterators are used in the reducer method.  In this style of iterator, operator* delivers the current value, operator++ is used to advance to the next value, and the end of an iterator is detected by comparing that iterator for equality with the special iterator value WmrIterator::end.



3.3 Java


Word count for WMR in Java language (Java style iterators, spec is found on Wmr_java.pdf)


3.3.1 mapper

/* Mapper  for word  count */

class Mapper  {
public void   mapper(String  key,  String value)  { String words[]  =  key.split("  ");
int i =  0;
for (i  =  0;	i <  words.length;	i++) Wmr.emit(words[i],  "1");
}

}



3.3.2 reducer

/* Reducer for word  count */

class Reducer  {
public void   reducer(String  key,  WmrIterator iter) {
int sum =  0;
while (iter.hasNext())  {
sum +=  Integer.parseInt(iter.next());
}
Wmr.emit(key,  Integer.valueOf(sum).toString());
}

}


Note: for this WMR interface for Java (see spec for details):

• The mapper and reducer are again methods of classes Mapper and Reducer, respectively,  as for C++.

• Java provides  useful string manipulation methods. Type conversion is provided in the Java libraries,  but is inconvenient.

• Java style iterators are used for the reducer. These have methods hasNext() which returns false when no new values exist in an iterator, and next() which returns the next unseen value and advances that iterator.
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3.4 Python


Word count for WMR in Python3 language (Python3 style iterators, spec is found on Wmr_jpy3.pdf)


3.4.1 mapper

def   mapper(key, value): words=key.split() for word  in words:
Wmr.emit(word,  ’1’)



3.4.2 reducer

def   reducer(key, iter):
sum =  0
for s  in iter:
sum =  sum +  int(s) Wmr.emit(key,  str(sum))


Note: Notes for this WMR interface for Python3 (see spec for details):

• The mapper and reducer for this interface are functions, as was the case for Scheme.

• Python provides many useful string manipulation methods for string objects, as well as convenient  type conver- sion functions int() and str().

• The reducer uses a Python-style iterator, which may be used conveniently  in a for loop construct.



3.5 Comparison


For comparison, here is an implementation of word count mapper and reducer for Java using Hadoop map-reduce directly, without using WMR.

// Java   WordCount   for Hadoop
// Based  on  Hadoop  documentation

package  wc;

import java.io.IOException;
import java.util.*;

import org.apache.hadoop.fs.Path; import org.apache.hadoop.conf.*; import org.apache.hadoop.io.*; import org.apache.hadoop.mapred.*; import org.apache.hadoop.util.*;

public class WordCount {
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public static  void   main(String[]  args)  throws   Exception { JobConf conf  =  new JobConf(WordCount.class); conf.setJobName("WordCount");

conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);

conf.setMapperClass(Map.class); conf.setCombinerClass(Reduce.class); conf.setReducerClass(Reduce.class);

conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class);

FileInputFormat.setInputPaths(conf,  new Path(args[0])); FileOutputFormat.setOutputPath(conf,  new Path(args[1]));

JobClient.runJob(conf);
}

public static  class Map extends  MapReduceBase
implements  Mapper  {
private final  static IntWritable one  =  new IntWritable(1);
private  Text word  =  new Text();

public void   map(LongWritable  key,  Text value, OutputCollector output,
Reporter reporter)  throws   IOException { String line =  value.toString();
StringTokenizer tokenizer =  new StringTokenizer(line);
while (tokenizer.hasMoreTokens())  { word.set(tokenizer.nextToken()); output.collect(word,  one);
}
}
}

public static  class Reduce  extends  MapReduceBase
implements Reducer  {
public void   reduce(Text  key,  Iterator values,  OutputCollector output,  Reporter reporter)  throws int sum =  0;
while (values.hasNext())  {
sum +=  values.next().get();
}

output.collect(key,  new IntWritable(sum));
}
}

}
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ACCESSING CONCURRENCY AND
PARALLELISM WITHIN A PROGRAMMING LANGUAGE




4.1 Features that are part of a programming language


• Java synchronized: a method or a segment of code within a method can be marked as synchronized, meaning that no two threads of execution may execute in synchronized sections for the same object at the same time.

• Ada (developed for DOD applications in 1980s): threads (“concurrent  tasks”), which may be created dynami- cally; “rendezvous” (cf. remote procedure call) with synchronized communication.

• Erlang: The language consists of (functional programming) sequential constructs plus additional concurrent constructs for carrying out sequential code in parallel. No threads, just processes – a design decision  to allow for easier fault tolerance, because shared resources such as memory are very difficult to manage correctly in the presence of faults.


4.2 Libraries


• MPI (Message  Passing Interface): Library allowing for send, receive, and other communication  calls for both point-to-point and collective communication in a distributed  system. Supports a notion of “communicator groups” of processes.

• Java Thread class; java.util.concurrent:  These are standard packages in the Java language.  The Thread class may be subclassed to provide  a (sequential)  run() method for carrying out specified code when that thread object is started. The package java.util.concurrent provides programming interfaces and classes for concurrency-safe  data structures,  thread management/reuse and scheduling, synchronization primitives such as semaphores, etc.


4.3 Other approaches


• Operating  system calls: For example, Linux provides fork() for creating new processes, socket() and related system calls for creating communication lines between processes that may be on separate machines, read() and write() for sending and receiving  along socket connections, select() for synchronizing communication, and various thread packages exist for Linux.
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• OpenMP C/C++ pragmas:  A convenient  approach for incrementally  adding synchronization in a shared- memory  multiprocessor  (such as a multicore  system), in which one adds preprocessor  pragmas  to request parallelization of a for loop, creation of threads, etc.

• CUDA programming of a GPGPU: Modern video controllers are highly parallel devices designed for highly parallel, very fast linear algebra computations that feed a pipeline  for adding further graphics features (such as texturing).   NVIDIA and other manufacturers now provide a programming interface enabling a programmer to make general-purpose computations with that specialized hardware—“General  Purpose Graphics Processing Unit (GPGPU)”. NVIDIA’s CUDA language provides  a library for C and C++ programs for the CPU that interact with separate “kernel” programs written for the GPU in order to perform such GPGPU computations.
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