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CHAPTER

ONE

INTRODUCTION

1.1 What is GPU?

Graphics Processing Unit (GPU), is an electronic circuit that, through rapid memory manipulation and massive parallel
data processing, accelerates the building of images intended for output to a display. Right now, GPUs are used in
almost all customer end personal computers, game consoles, professional workstations and even the cell phone you
are holding.

Before GPU was introduced, CPU did all the graphic processing tasks. In the early 1990s, computer manufactures
began to include GPU into computer systems with the aim of accelerating common graphics routines. After two
decades of development, GPUs eventually outpaced CPUs as they actually had more transistors, ran faster and were
capable of doing parallel computation more efficiently. GPUs became so complex that they are basically computers
in themselves, with their own memory, buses and processors. Therefore, sometimes GPU is like an extra brain (sup-
plemental processors) to the computer system. As GPU harnessed more and more horsepower, GPU manufactures,
such as NVIDIA and ATI/AMD, found a way to use GPUs for more general purposes, not just for graphics or videos.
This gave birth to CUDA structure and CUDA C Programming Language, NVIDIA’s response on facilitating the
development of General Purpose Graphics Processing Unit (GPGPU).

1.2 What is the difference between GPU and CPU?

The major difference between GPU and CPU is that GPU has a highly parallel structure which makes it more effective
than CPU if used on data that can be partitioned and processed in parallel. To be more specific, GPU is highly
optimized to perform advanced calculations such as floating-point arithmetic, matrix arithmetic and so on.

The reason behind the difference of computation capability between CPU and GPU is that GPU is specialized for
compute-intensive and highly parallel computations, which is exactly what you need to render graphics. The design
of GPU is more of data processing than data caching and flow control. If a problem can be processed in parallel, it
usually means two things: first, same problem is executed for each element, which requires less sophisticated flow
control; second, dataset is massive and problem has high arithmetic intensity, which reduces the need for low latency
memory.

The graph above shows the differences between CPU and GPU in their structure. Cache is designed for data caching;
Control is designed for flow control; ALU (Arithmetic Logic Unit) is designed for data processing.

In the NVISION 08 Conference organized by the NVIDIA corporation, employers from NVIDIA used a rather inter-
esting yet straight forward example illustrating the difference between CPU and GPU. You can watch the video by
clicking the link below and hope it can give you a better idea about what the difference between GPU and CPU is.
Video
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Figure 1.1: This figure is from the NVIDIA CUDA Programming Guide

1.3 What is the advantage of using GPU for computation?

Nowadays, most of the scientific researches require massive data processing. What scientist usually do right now is to
have all the data being processed on supercomputing clusters. Although most universities have constructed their own
parallel computing clusters, researchers still need to compete for time to use the shared resources that not only cost
millions to build and maintain, but also consume hundreds of kilowatts of power.

Different from traditional supercomputers that are built with many CPU cores, supercomputers with a GPU structure
can achieve same level of performance with less cost and lower power consumption. Personal Supercomputer (PSC)
based on NVIDIA’s Tesla companion processors, was first introduced in 2008. The first generation four-GPU Tesla
personal supercomputer have 4 Teraflops of parallel supercomputing performance, more than enough for most small
researches. All it takes is 4 Tesla C1060 GPUs with 960 cores and two Intel Xeon processors. Moreover, Personal
supercomputer is also very energy efficient as it can even run off a 110 volt wall circuit. Although supercomputer with
GPUs cannot match the performance of the top ranking supercomputers that cost millions even billions, it is more than
enough for researchers to perform daily research related computations in subjects like bioscience, life science, physics
and geology.

1.4 What are the important parts inside a GPU?

Although modern GPUs are basically computers themselves, they still serve as a part of a computer system. A modern
GPU is connected with the host through a high speed I/O bus slot, usually a PCI-Express slot. Modern GPUs are
extremely energy consuming. Some of the GPUs alone consume hundreds watts of power, sometimes higher than all
other parts of the computer system combined. Part of the reason that GPUs require such power supply is that they
have much complex structure and can perform much sophisticated task than other parts of computer system. Owe to
its high capability, GPU needs its own memory, control chipset as well as many processors.

GPUs these days are usually equipped with several gigabytes of on-board memory for user configuration. GPUs
designed for daily use like gaming and video rendering, such as NVIDIA’s Geforce series GPUs and ATI/AMD’s
Radeon series GPUs, have on-board memory capacity ranging from several hundreds megabytes to several gigabytes.
Professional GPUs designed for high-definition image processing and General Purpose Computation, such as the Tesla
Companion Processor we are using, usually have memory up to 5 or 6 gigabytes. Data are transferred between the
GPU on-board memory and host memory through a method called DMA (Direct Memory Access). One thing worth
mentioning is that CUDA C programming language supports direct access of the host memory from GPU end under
certain restrictions. As GPU is designed for compute-intensive operations, device memory usually supports high data
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Figure 1.2: This figure is inspired by the figure found in Understanding the CUDA Data Parallel Threading Model: A
Primer written by Michael Wolfe from The Portland Group

bandwidth with not deeply cached memory hierarchy.

GPUs from NVIDIA have many processors, called streaming Processors (SP). Each streaming processor is capable
of executing a sequential thread. For a GPU with Fermi architecture, like the one we are using, every 32 streaming
processors is organized in a Streaming Multiprocessor (SM). A GPU can have one or more multiprocessors on board.
For example, the Tesla C2075 GPU card we are using, has 14 multiprocessors built in. Except for 32 streaming
processors, each multiprocessor is also equipped with 2 warp scheduler, 2 special function units (4 in some GPUs), a set
of 32-bit registers and 64KB of configurable shared memory. A warp scheduler is responsible for threads control; SFU
handles transcendentals and double-precision operations. For a GPU with Kepler architecture, every 192 streaming
processor is organized in a multiprocessor. There are also more warp schedulers and SFUs built in.

Shared memory, or L1 cache, is a small data cache that can be configured through software. Shared memory is
also shared among all the streaming processors within one multiprocessor. Compared with on-board memory, shared
memory is low-latency (usually register speed) and has high bandwidth. Each multiprocessor has 64KB of shared
memory that can be configured by using special commands in host code. Shared memory is distributed to software-
managed data cache and hardware data cache. The user can choose to assign either 48KB to software-managed data
cache (SW) and 16KB to hardware data cache (HW) or the other way around.

1.5 How does CUDA connect with hardware?

When the host code invokes a kernel grid through a CUDA program, blocks in the grid are distributed to different
multiprocessors based on available execution capacity of each multiprocessor. Each multiprocessor is capable of
processing one or more blocks throughout the kernel execution. However, each block can only be processed by one
multiprocessor.

Fermi architecture supports up to 48 active warps on each multiprocessor. The advantage of having many active warps
in a process at the same time is significant reduction of memory latency. Traditionally, memory latency is reduced
by adding more cache memory hierarchy into the system. However, by using high degree of multithreading, GPUs
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can also effectively reduce memory latency. What happens is that when one warp stalls on memory operation, the
multiprocessor can select another warp and begin to process that one.

When a block is processed by a multiprocessor, threads in this block are further divided into groups of 32 threads,
what NVIDIA calls a warp. Although 32 streaming processors in a block and 32 threads in a warp seems to be a good
match for each multiprocessor to process each warp in one clock cycle, the reality is somehow different. As mentioned
previously, each multiprocessor has two warp schedulers, which enables it to process two warps simultaneously. After
the partition, each warp gets scheduled by a warp scheduler for execution. Each warp scheduler pumps 16 threads
(half warp) into a group of 16 streaming processors for execution. Therefore, it would take two clock cycles to process
each warp and one multiprocessor can process two warps in two clock cycles. For double-precision operations, each
multiprocessor would combine two groups of streaming processors so that they act as a multiprocessor with 16 double-
precision streaming processors.

1.6 Is CUDA the only GPU programming language available?

When we are learning CUDA C programming language, it is important for you to know that the C programming
language is not the only language that can be bound with CUDA structure. NVIDIA also made other programming
languages available such as Fortran, Java and Python as binding languages with CUDA.

Furthermore, NVIDIA is not the only company manufacturing GPU cards, which means CUDA is not the only GPU
programming MPI available. When NVIDIA were developing CUDA, AMD/ATI responded with ATI Stream, their
GPGPU technology for AMD/ATI Radeon series GPUs. ATI Stream technology uses OpenCL as its binding language.

1.6. Is CUDA the only GPU programming language available? 4
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CHAPTER

TWO

CUDA INTRO

Before we proceed to our first example, please follow the following instructions to set up your working environment.
The directory/folder structure needed for these examples is a folder called GPUProgramming with two folders inside
of it, one called common (from a tarball) and one called examples (you should make). Here’s how to make them:

1. Create a top-level working folder for the code you will examine and run, called GPUProgramming.

2. Download the following file: download common.tar.gz

3. Extract all the files in GPUProgramming, which should create a folder common.

4. Create another folder called examples inside GPUProgramming. The examples folder will contain the
CUDA code examples below.

5. Be sure to keep the common folder outside of your examples source code folder (this is because the example
code includes code from ../common).

Note: Inside the common folder is the source code that contains helper functions. These include some error handling
functions and APIs required for the later graphic programs, such as ray-tracing.

2.1 Acknowledgement

The examples used in this chapter are based on examples in CUDA BY EXAMPLE: An Introduction to General-
Purpose GPU Programming, written by Jason Sanders and Edward Kandrot, and published by Addison Wesley.

Copyright 1993-2010 NVIDIA Corporation. All rights reserved.

This copy of code is a derivative based on the original code and designed for educational purposes only. It contains
source code provided by NVIDIA Corporation.

2.2 An Example of Vector Addition

We will start our CUDA journey by learning a very simple example, the vector addition example. It basically takes
two vectors that have the same dimensions, adds them together and then returns the new vector back.

Vector Addition source file: VA-GPU-11.cu

Get this source file and open it in an editor or terminal window so that you can follow along as sections of the code
are explained here.
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2.2.1 The Device Code

As you may have noticed in your background reading about CUDA programming, CUDA programs execute in two
separate places. One is called the host (your CPU), another is called device (your GPU). In our example, the add()
function executes on the device (our GPU) and the rest of the C program executes on our CPU.

__global__ void add( int *a, int *b, int *c ) {
int tid = 0;
// loop over all the element in the vector
while (tid < N){

c[tid] = a[tid] + b[tid];
tid += 1; // we are using one thread in one block

}
}

As shown in the code block above, we need to add a __global__ qualifier to the function name of the original C code
in order to let function add() execute on a device.

You might notice that this code is much like standard C code except for the __global__ qualifier. We are seeing this
because this version of vector addition’s device code is utilizing only one core of the GPU. We can see this from the
line

tid += 1; // we are using one thread in one block

where we only add 1 to the tid. In the later examples, where we will be using more cores of the GPU, you will see
differences between CUDA C programming language and Standard C programming language.

2.2.2 The Host Code

Before you proceed

Unlike the device code, the host code is more complicated and requires more explanation. We advise you to
download the source file provided at the beginning of this page and have it open in a separate window. We
divided the host code into several parts for the purpose of easier explanation. However, looking at the host code
as a whole might be helpful, especially for CUDA programming, where host codes are usually highly organized
and structured.

int main( void ) {

int *a, *b, *c;
int *dev_a, *dev_b, *dev_c;

// allocate memory on the CPU
a = (int*)malloc( N * sizeof(int) );
b = (int*)malloc( N * sizeof(int) );
c = (int*)malloc( N * sizeof(int) );

// fill arrays ’a’ and ’b’ on the CPU
for (int i=0; i<N; i++) {

a[i] = -i;
b[i] = i * i;

}

As shown in the code block above, similar to standard C programming, we first need to declare pointers. Notice that
we declared two sets of pointers, one set is used to store data on host memory, another is used to store data on the
device memory.

2.2. An Example of Vector Addition 6
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The Event API

Before we go any further, we need to first learn ways of measuring performance in CUDA runtime. How do we
measure performance? That is, how fast can the program run? To be more specific, we will try to time the program.

The tool we use to measure the time GPU spends on a task is the CUDA Event API.

// define events in the field
cudaEvent_t start, stop;
// create two events we need
HANDLE_ERROR( cudaEventCreate( &start ) );
HANDLE_ERROR( cudaEventCreate( &stop ) );
// instruct the runtime to record the event start.
HANDLE_ERROR( cudaEventRecord( start, 0 ) );

The first step of using an event is declaring the event. In this example we declared two events, one called start, which
will record the start event and another called stop, which will record the stop event. After declaring the events, we
can use the command cudaEventRecord() to record an event. You can think of recording an event as initializing it.
You may also notice that we pass this command a second argument (0 in this case). In our example this argument is
actually useless. If you are really interested in this, however, you can read more about CUDA streams.

We can see that there is another function HANDLE_ERROR() around each of the commands. For the moment, this
function does not do anything but returning errors if CUDA commands run into any.

Why would we use Event API?

If you are a C programming language veteran you may ask the question: why don’t we use the the timing
functions in standard C, such as clock() or timeval structure, to perform this task? This is a really good question.
The fundamental motivation of using Event API instead of timing functions in standard C lies on the differences
between CPU and GPU computation. To be more specific, GPU is a companion computation device, which
means the CPU has to call GPU to do computations every time. However, when the GPU is doing a computation,
the CPU does not wait for it to finish its task, instead the CPU will continue to execute the next line of code while
GPU is still working on the previous call. This asynchronous feature of the GPU computation structure leads
to possible inaccuracy when measuring time using standard C timing functions. Therefore, Event API becomes
needed.

The cudaMalloc() Function

// allocate memory on the GPU
HANDLE_ERROR( cudaMalloc( (void**)&dev_a, N * sizeof(int) ) );
HANDLE_ERROR( cudaMalloc( (void**)&dev_b, N * sizeof(int) ) );
HANDLE_ERROR( cudaMalloc( (void**)&dev_c, N * sizeof(int) ) );

Just like the standard C programming language, you need to allocate memory for variables before you start using them.
The command cudaMalloc(), similar to malloc() command in standard C, tells the CUDA runtime to allocate memory
on the device (Memory of GPU), instead of on the host (Memory of CPU). The first argument is a pointer that points
to where you want to hold the address of the newly allocated memory.

Because the memory units on the host are separate from those on the GPU, you are not allowed to modify memory
allocated on the device (GPU) from the host directly in CUDA C programming language. Instead, you need to use
two other methods to access the device memory. You can do it by either using device pointers in the device code, or
you can use the cudaMemcpy() method.

The way to use pointers in the device code is exactly the same as we did in the host code. In other words, a pointer in
CUDA C is exactly the same as in standard C. However, there is one thing you need to pay attention to. Host pointers

2.2. An Example of Vector Addition 7
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can only access memory (usually CPU memory) from host code, you cannot access device memory directly. On the
other hand, device pointers can only access GPU memory from device code as well.

The cudaMemcpy() Function

// copy arrays ’a’ and ’b’ to the GPU
HANDLE_ERROR( cudaMemcpy( dev_a, a, N * sizeof(int),

cudaMemcpyHostToDevice ) );
HANDLE_ERROR( cudaMemcpy( dev_b, b, N * sizeof(int),

cudaMemcpyHostToDevice ) );

As mentioned in the last section, we can use cudaMemcpy() from host code to place data in memory on a device. This
command is the typical way of transferring data between host and device. This call is similar to the standard C call
memcpy(), but requires more parameters. The first argument identifies the destination pointer; the second identifies the
source pointer. The last parameter to the call is cudaMemcpyHostToDevice, telling the runtime that the source pointer
is a host pointer and the destination pointer is a device pointer.

The Kernel Invocation

The following line in main() is the call for device code to be executed, in this case the function add(), which was
shown earlier. You may notice that this call is similar to a normal function call but has additional code in it, notably
the <<< , the >>>, and what lies in between them (the triple angle brackets). We will talk about what they represent
in later examples. At this point all you need to know is that they are telling the GPU to use only one thread to execute
the program.

// kernel invocation code
add<<<1,1>>>( dev_a, dev_b, dev_c );

More cudaMemcpy() Function

// copy array ’c’ back from the GPU to the CPU
HANDLE_ERROR( cudaMemcpy( c, dev_c, N * sizeof(int),

cudaMemcpyDeviceToHost ) );

In the previous section we have seen how CUDA runtime transfers data from Host to Device. This time we will see
how to transfer data back to the host. Notice that this time device memory is the source and host memory is the
destination. Therefore, we are using the argument cudaMemcpyDeviceToHost.

Timing using Event API

// get stop time, and display the timing results
HANDLE_ERROR( cudaEventRecord( stop, 0 ) );
HANDLE_ERROR( cudaEventSynchronize( stop ) );
float elapsedTime;
HANDLE_ERROR( cudaEventElapsedTime( &elapsedTime,

start, stop ) );
printf( "Time to generate: %3.1f ms\n", elapsedTime );

We have seen how to declare and record an Event API in CUDA C, but have not elaborated on how to use such a tool
to measure performance. The basic idea is that we first declare an event start and an event stop. Then at the beginning
of the program we record event start and at the end of the program we record event stop. The last step is to calculate
the elapsed time between two events.

2.2. An Example of Vector Addition 8
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As shown in the code block above, we again use the command cudaEventRecord() to instruct the runtime to record the
event stop. Then we proceed to the last step, which is to get the elapsed time using the command cudaEventElapsed-
Time().

However, there is still a problem with timing GPU code in this way. Though the CUDA C programming language
though is derived from standard C, it has many characteristics that are different from standard C. We have mentioned
in previous sections that CUDA C is asynchronous. This is an example to jog your memory. Suppose we are running a
program to do matrix multiplication, and the host calls the GPU to do the computation. As GPU begins executing our
code, the CPU proceeds to the next line of code instead of waiting for the GPU to finish its work. If we want the stop
the event to record the correct time, we need to make sure that our event is recorded after the GPU finishes everything
prior to the call to cudaEventRecord(). To address this problem, CUDA C calls the function cudaEventSynchronize()
to synchronize the stop event.

The cudaEventSynchronize() function is essentially instructing the runtime to create a barrier to block the CPU from
executing further instructions until the GPU has reached the stop event.

Another caveat worth mentioning is that CUDA events are implemented directly on the GPU. Therefore they cannot
be used for timing device code mixed with host code. In other words, you will get unreliable results if you attempt to
use CUDA events to time more than kernel executions and memory copies involving the device.

Note: You should only include kernel execution and memory copies involving the device in between start event and
stop event in CUDA. Anything more included could lead to unreliable results.

The cudaFree() Function

// free memory allocated on the GPU
HANDLE_ERROR( cudaFree( dev_a ) );
HANDLE_ERROR( cudaFree( dev_b ) );
HANDLE_ERROR( cudaFree( dev_c ) );

// destroy events to free memory
HANDLE_ERROR( cudaEventDestroy( start ) );
HANDLE_ERROR( cudaEventDestroy( stop ) );

While reading the section about cudaMalloc(), it may occur to you that we made a call different from the call free() to
free memory on the device. To free memory allocated on the device, we need to use command cudaFree() instead of
free().

To finish up the code, we need to free memory allocated on the CPU as well.

// free memory allocated on the CPU
free( a );
free( b );
free( c );

The following code is useful to verify whether the GPU has done the task correctly or not. This time we are using
CPU to verify GPU’s work. We can do this in this problem due to a small data size and simple computation.

bool success = true;
for (int i=0; i<N; i++) {

if ((a[i] + b[i]) != c[i]) {
printf( "Error: %d + %d != %d\n", a[i], b[i], c[i] );
success = false;

}
}
if (success) printf( "We did it!\n" );
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2.2.3 Compiling the code and executing this example

From the examples folder where your file VA-GPU-11.cu is located, you compile the code using the nvcc compiler.
On unix machines we do this on the command line like this:

nvcc -o VA-GPU-11 VA-GPU-11.cu

Run the executable called VA-GPU-11. On unix machines we do this on the command line like this:

./VA-GPU-11

This example is only using one thread on the GPU card, so it is not yet a parallel programming example. Furthermore,
you would never go to the trouble of moving data just to use one of the many cores available on the GPU card!
Continue on to see how we take advantage of those cores.

Note: Before moving on, execute this code a few times and record how much time it takes on your CUDA-enabled
GOU.

2.3 Vector Addition with Blocks

We have learned some basic concepts in CUDA C in our last example. Starting from this next example, we will begin
to learn how to write CUDA language that will explore the potential of our GPU card.

Download this Vector Addition with Blocks source file: VA-GPU-N1.cu into the examples directory where you
placed the previous example code file.

2.3.1 Block

Recall that in the previous example, we used the code

add<<<1,1>>>( dev_a, dev_b, dev_c );

to run device ‘kernel’ code and we left those two numbers in the triple angle brackets unexplained. Well, the first
number tells the kernel how many parallel blocks we would like to use to execute the function. For example, if we
launch the kernel function with <<<16,1>>>, we are essentially creating 16 copies of the kernel function and running
them in parallel. CUDA developers call each of these parallel invocations a block.

Blocks are organized into a one-dimensional, two-dimensional, or three-dimensional grid. Why do we need a two-
dimensional or even a three-dimensional grid? Why can’t we just stick with the one-dimensional grid? Well, it turns
out that for problems with two or more dimensional domains, such as matrix multiplication or image processing (don’t
forget the reason GPU been exist is to process images faster), it is often convenient and more efficient to use two or
more dimensional indexing. Right now, nVidia GPUs that support CUDA structure can assign up to 65536 blocks in
each dimension of the grid, that is in total 65536× 65536× 65536 blocks in a grid.

Note: Some books imply that the grid in CUDA has at most two-dimensions. On the other hand, some books (includ-
ing the official CUDA Programming Guide provided by NVIDIA) suggest that the grid can be three-dimensional. It
turns out that older GPU units are not powerful enough to run grids in three-dimensions. Therefore older books might
argue that CUDA has only a two-dimensional grid. However, as GPUs get more and more powerful, NVIDIA enable
newer GPUs to utilize three-dimensional grids.
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To see whether your device supports three-dimensional grids or not, please run the following source code and see the
Compute Capability entry in the output. If it is 2.x or 3.x, then your device supports three-dimensional grids. If it is
1.x or less, you can only use two-dimensional grids. download enum_gpu.cu

2.3.2 The Device Code

__global__ void add( int *a, int *b, int *c ) {

// keep track of the index
int tid = blockIdx.x;

while (tid < N) {
c[tid] = a[tid] + b[tid];
tid += numBlock; // shift by the total number of blocks

}
}

This is the complete device code.

We have mentioned that there are one, two and three-dimensional grids. To index different blocks in a grid, we use the
built-in variables CUDA runtime defines for us: blockIdx. The variable blockIdx is a three-component vector, so that
threads can be identified using a one-dimensional, two-dimensional or three-dimensional index. To access different
components in this vector, we use blockIdx.x, blockIdx.y and blockIdx.z.

// keep track of the index
int tid = blockIdx.x;

Since we have multiple blocks performing the same task, we need to keep track of these blocks so that the kernel can
pass the right data to them and bring the right data back. Since we have only 1 thread in each block, we can simply
use blockIdx to track the index.

tid += numBlock; // shift by the total number of blocks

Although we have multiple blocks (1 thread per block) working simultaneously after one block finishes one compu-
tation, this does not necessarily mean a block will only perform one time of computation. Normally, we could have
a problem size that is larger than the number of blocks we have. Therefore, we need each block to perform more
than one time of computation. We do this by adding a stride to the tid after the while loop finishes one round. In this
example, we want tid to shift to the next data point by the total number of blocks.

2.3.3 The Host Code

add<<<numBlock,numThread>>>( dev_a, dev_b, dev_c );

Except the kernel invocation part of the host code, everything else is the same. However, as we are calling numBlock
and numThread in the code, we need to define them at the very beginning of the source code file.

#define numThread 1 // in this example we keep one thread in one block
#define numBlock 128 // in this example we use multiple blocks

2.4 Vector Addition with Blocks and Threads

Vector Addition with Blocks and Threads source file: VA-GPU-NN.cu

2.4. Vector Addition with Blocks and Threads 11
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2.4.1 Threads

In the last example we learned how to launch multiple blocks in CUDA C programs. This time, we will see how to
split parallel blocks. CUDA runtime allows us to split blocks into threads. Recall that in the previous example we use
the code

add<<<numBlock,numThread>>>( dev_a, dev_b, dev_c );

to call for device kernels where numBlock is 128 and numThread remain as 1. The second number represents how
many threads we want in each block.

Here comes the question, why do we need two sets of parallel organization system? Why do we need not only blocks
in grid, but also threads in blocks? Are there any advantages in one over the other? Well, there are advantages that we
will cover in later examples, so for now, please bear with us.

Just like blocks are organized in up to three-dimensional grids, threads can also be organized in one, two or three-
dimensional blocks. Just like there is a limit on the number of blocks in a grid, there is also a limit on the number of
threads in a block. Right now, for most of the high-end nVidia GPUs, this limit is 1024. Be really careful here, 1024 is
the total number of threads in a block, not the limit per dimension like in the grid. Most of the nVidia GPUs that are
two or three year old, the limit might be 512. You can query the maxThreadsPerBlock field of the device properties
structure to find out which number you have.

2.4.2 The Device Code

__global__ void add( int *a, int *b, int *c ) {

// keep track of the index
int tid = threadIdx.x + blockIdx.x * numBlock;

while (tid < N) {
c[tid] = a[tid] + b[tid];
tid += numThread * numBlock;// shift by the total number of thread in a grid

}
}

This is the complete device code.

Just like we use CUDA built-in variables to index blocks in a grid, we use variable threadIdx to index threads in a block.
threadIdx is also a three-component vector and you can access each of its element using threadIdx.x, threadIdx,y and
threadIdx.z.

// keep track of the index
int tid = threadIdx.x + blockIdx.x * numBlock;

The thread handles the data at its thread id. Recall that earlier we were using tid = blockIdx.x only. Now, as we are
using multiple threads per block, we have to keep track of not only blockId, but also the threadId as well.

tid += numThread * numBlock;// shift by the total number of thread in a grid

Since we have multiple threads in multiple blocks working simultaneously, after one thread in one block finishes one
computation, we want it to shift to the next data point by the total number of threads in the system. In this example,
total number of threads is the number of blocks times threads per block.

2.4. Vector Addition with Blocks and Threads 12
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2.4.3 The Host Code

add<<<numBlock,numThread>>>( dev_a, dev_b, dev_c );

Except the kernel invocation part of the host code, everything else is the same. However, as we are calling numBlock
and numThread in the code, we need to define them at the very beginning of the source code file.

#define numThread 128 // in this example we use multiple threads
#define numBlock 128 // in this example keep on using multiple blocks

2.4. Vector Addition with Blocks and Threads 13
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THREE

THREAD ADVANCE

3.1 Acknowledgement

The examples used in this chapter are based on examples in CUDA BY EXAMPLE: An Introduction to General-
Purpose GPU Programming, written by Jason Sanders and Edward Kandrot, and published by Addison Wesley.

Copyright 1993-2010 NVIDIA Corporation. All rights reserved.

This copy of code is a derivative based on the original code and designed for educational purposes only. It contains
source code provided by NVIDIA Corporation.

3.2 Vector Dot Product

In this example we will see how to perform a dot product using GPU computation. We know that the result of vector
addition is a vector, but the result of vector dot product is a number. However, we can divide the vector dot product
process into two steps. We first use CUDA to the multiplication process. After this step, the device will return a vector
with all its elements as multiplication results to the host code. Then the CPU can do all the adding up process.

Vector Dot Product source file: Dot-GM.cu

3.2.1 The Device Code

__global__ void dot( float *a, float *b, float *c ) {

// keep track of the index
int tid = threadIdx.x + blockIdx.x * numThread;

while (tid < N) {
c[tid] = a[tid] * b[tid];
tid += numThread * numBlock; // shift by the total number of thread in a grid

}
}

The device code is pretty straight forward. Each thread multiplies a pair of corresponding elements in two vectors.
After each thread done their job for the first time, if there are still elements left unprocessed, they runtime will instruct
the threads to do another round of computation until all the elements are processed.
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3.2.2 The Host Code

int main( void ) {

float *a, *b, sum, *c;
float *dev_a, *dev_b, *dev_c;

// allocate memory on the cpu side
a = (float*)malloc( N*sizeof(float) );
b = (float*)malloc( N*sizeof(float) );
c = (float*)malloc( N*sizeof(float) );

// fill in the host memory with data
for (int i=0; i<N; i++) {

a[i] = i;
b[i] = i*2;

}

// start the timer
cudaEvent_t start, stop;
HANDLE_ERROR( cudaEventCreate( &start ) );
HANDLE_ERROR( cudaEventCreate( &stop ) );
HANDLE_ERROR( cudaEventRecord( start, 0 ) );

// allocate the memory on the GPU
HANDLE_ERROR( cudaMalloc( (void**)&dev_a, N*sizeof(float) ) );
HANDLE_ERROR( cudaMalloc( (void**)&dev_b, N*sizeof(float) ) );
HANDLE_ERROR( cudaMalloc( (void**)&dev_c, N*sizeof(float) ) );

// copy the arrays ’a’ and ’b’ to the GPU
HANDLE_ERROR( cudaMemcpy( dev_a, a, N*sizeof(float), cudaMemcpyHostToDevice ) );
HANDLE_ERROR( cudaMemcpy( dev_b, b, N*sizeof(float), cudaMemcpyHostToDevice ) );

dot<<<numBlock,numThread>>>( dev_a, dev_b, dev_c );

// copy the array ’c’ back from the GPU to the CPU
HANDLE_ERROR( cudaMemcpy( c, dev_c, N*sizeof(float), cudaMemcpyDeviceToHost ) );

// get stop time, and display the timing results
HANDLE_ERROR( cudaEventRecord( stop, 0 ) );
HANDLE_ERROR( cudaEventSynchronize( stop ) );
float elapsedTime;
HANDLE_ERROR( cudaEventElapsedTime( &elapsedTime,

start, stop ) );
printf( "Time to generate: %3.1f ms\n", elapsedTime );

// finish up on the CPU side
sum = 0;
for (int i=0; i<N; i++) {

sum += c[i];
}

#define sum_squares(x) (x*(x+1)*(2*x+1)/6)
printf( "Does GPU value %.6g = %.6g?\n", sum,

2 * sum_squares( (float)(N - 1) ) );

// free memory on the gpu side
HANDLE_ERROR( cudaFree( dev_a ) );
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HANDLE_ERROR( cudaFree( dev_b ) );
HANDLE_ERROR( cudaFree( dev_c ) );

// free memory on the cpu side
free( a );
free( b );
free( c );

}

The host code the much like the vector addition example. We first allocate the memory on host memory and device
memory. Then we initialize the matrices and fill them with data. After that we copy the data from host to device and
execute the kernel code. Finally we transfer the data back from device memory to host memory. Do not forget to use
Event API to measure the performance.

However, we need to point out two differences.

float *a, *b, sum, *c;
float *dev_a, *dev_b, *dev_c;

First is that we need to declare one more pointer for the host code. In the vector addition example, two sets of array
pointers are enough. However, in this example, we are returning a number. Therefore, a pointer which pointing to that
number is essential.

// finish up on the CPU side
sum = 0;
for (int i=0; i<N; i++) {

sum += c[i];
}

Another difference is that we need to add up all the elements in the returned vector. This can simply be done by adding
a for loop in the host code. Notice that we put this loop outside of the Event API so that it will not interfere our timing
result.

You can verify the result by adding the following code into the host code.

#define sum_squares(x) (x*(x+1)*(2*x+1)/6)
printf( "Does GPU value %.6g = %.6g?\n", sum,

2 * sum_squares( (float)(N - 1) ) );

For people who are familiar with discrete math, the code above should be simple to apprehend. This function will give
the result through a more clever way.

3.3 Vector Dot Product with Reduction

In the previous example, you might have the question: why do we need to return the whole array back to the CPU? Is
is possible for use to first reduce them a little bit and then return it to the CPU?

Well, we can do reduction in CUDA. In this chapter, we will see how to use reduction in CUDA. But before we proceed,
we first need to know something about shared memory in CUDA. In each of the blocks we create, CUDA runtime will
assign a region memory to this block. This type of memory is called shared memory. When you are declaring your
variables, you can add the CUDA C keyword __shared__ to make this variable reside in shared memory. Why do we
need shared memory?

When we are learning Block and Thread, we had the question why would we need two hierarchy to organize threads
question in mind. Well, part of the reason is that we can benefit from shared memory by organize threads in blocks.
When we declare a variable and make it reside in shared memory, CUDA runtime creates a copy of this variable in
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each block you launched in host code. Every threads in one block shares this memory, which means they can see and
modify their shared memory. However, they cannot see or modify shared memory assigned in other blocks. What does
this mean to us? Well, if you can have one region of memory that is private to threads in one block, you can explore
ways to facilitate communication and collaboration between threads within this block.

Another reason we like to use shared memory is that it is faster than global memory we used to use. As the latency of
shared memory tends to be far lower than global memory, it is the ideal choice to serve as cache in each block.

In this example, we will see how we use shared memory to serve as a cache-per-block and how we can perform
reduction on it.

Vector Dot Product with Reduction source file: Dot-SM.cu

3.3.1 The Device Code

__global__ void dot( float *a, float *b, float *c ) {

// declare cache in the shared memory
__shared__ float cache[numThread];

// keep track of thread index
int tid = threadIdx.x + blockIdx.x * numThread;
// connect thread index and cache index
int cacheIndex = threadIdx.x;

float temp = 0;
while (tid < N) {

temp += a[tid] * b[tid];
tid += numThread * numBlock;// increase by the total number of thread in a grid

}

// set the cache values
cache[cacheIndex] = temp;

// synchronize threads in this block
__syncthreads();

// for reductions, numThread must be a power of 2 because of the following code
int i = numThread/2;
while (i != 0) {

if (cacheIndex < i)
cache[cacheIndex] += cache[cacheIndex + i];

__syncthreads();
i /= 2;

}

// write back to the global memory
if (cacheIndex == 0)

c[blockIdx.x] = cache[0];
}

// declare cache in the shared memory
__shared__ float cache[numThread];

In the two lines of code above, we declared a cache in shared memory for this block. We will then use this cache to
store each thread’s running sum. You can also see that we set the size of the cache same as numThread so that each
thread in the block can have its own place to store its running sum. Notice we only create one copy of cache instead
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of creating numBlock copies. The compiler will automatically create a copy of cache in each block’s shared memory,
meaning we only have to declare one copy.

float temp = 0;
while (tid < N) {

temp += a[tid] * b[tid];
tid += numThread * numBlock;// increase by the total number of thread in a grid

The actual vector dot product computation is the similar to what we seen in the global memory version. However,
there is little difference. You can see from the code above, instead of using

c[tid] = a[tid] * b[tid];

we use

temp += a[tid] * b[tid];

The reason causes this difference is that we are finding a running sum in this example. In the previous example, as we
are returning a vector exactly the same size as the input, we have enough space to store each multiplication results.
Even we have less threads than vector dimension so that each thread will compute more than one value, they can store
each value in different places. However, in this example, we have exactly the same amount of place for storage as
number of threads in each block. If any thread compute more than once, they still have only one place to store values.
This bring us to why we need to use running sum of each thread.

You may notice we add a line of code you have never seen before.

// synchronize threads in this block
__syncthreads();

We have seen code similar to this before. When we are learning how to use CUDA Event API to measure perfor-
mance, we used command cudaEventSynchronize() to synchronize the stop event. The purpose of __syncthreads()
is somehow similar to the command cudaEventSynchronize(). When we are using shared memory to facilitate com-
munication and collaboration between threads, we need to create a way to synchronize them as well. For example, if
one thread is writing a number to the shared memory and another thread need to use that number for further compu-
tation, we want the first thread to finish its work before the second thread executes its command. What the command
__syncthread() will do, is essentially create a barrier for all the threads and block them from executing further com-
mand. After all threads have finished executing commands before __syncthread(), then they can all proceed to the next
command.

After we make sure all the elements in cache is filled, we can proceed to the reduction process.

// for reductions, numThread must be a power of 2 because of the following code
int i = numThread/2;
while (i != 0) {

if (cacheIndex < i)
cache[cacheIndex] += cache[cacheIndex + i];

__syncthreads();
i /= 2;

}

Suppose we have a cache with 256 entries. What the code above would do is that it first take 128 thread in the block
and each thread will add two of the values in cache[a] and cache[a+128] and store the value back to cache[a]. Then
in the second iteration it will take 64 thread in the block and each thread will add values in cache[a] and cache[a+64]
and store the value back to cache[a]. After log2(numThread) times of operation, we would have the sum of all 256
values stored in the first element of the cache. Be really careful that we need to synchronize threads every time after
we perform one reduction.

Finally, we choose the thread with index 0 to write the result back to the global memory.
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// write back to the global memory
if (cacheIndex == 0)

c[blockIdx.x] = cache[0];
}

3.3.2 The Host Code

In general, the host code of the shared memory version is very similar to that of the global memory version. However,
there are several difference we need to point out.

partial_c = (float*)malloc( numBlock*sizeof(float) );
HANDLE_ERROR( cudaMalloc( (void**)&dev_partial_c,

numBlock*sizeof(float) ) );

In the above two lines of code, in the previous example, we declared two sets of pointers with each pointer pointing
to array having the same size. This time, however, we need the output array to be smaller than the vector size. Since
every block’s will write only one number back to the global memory, the size of output array should be numBlock.

Another point worth mentioning is that we define the numBlock in the following way instead of assign a number to it.

#define imin(a,b) (a<b?a:b)
const int numBlock = imin( 32, (N+numThread-1) / numThread );

When we are choosing the number of blocks to launch in this problem, we faces to requirements. First is that we
should not create too many blocks. In the final step where all the results returned by all the blocks are summed up,
we are using CPU to compute. This means if we create too many blocks, we would leave CPU too much workload.
Another requirements is that we cannot assign too less blocks either. As we can only fit 256 threads in each block, if
we assign not enough blocks, we would end up having each thread doing many times of computation. Facing this two
requirements, we came up with the solution above. We use the smaller number between 32 and (N+numThread-1) /
numThread. The function (N+numThread-1) / numThread gives the smallest multiple of numThread that is equal or
larger than the vector size. Calculating this number will ensure we have just enough blocks so that each element in a
small vector has its own thread. If we are facing a small vector, we can us the later to assign not too many blocks. If
we are facing a gigantic vector, 32 blocks is somehow enough to keep the GPU busy.

Be aware the number 32 was given by a CUDA programming book that is several years old. We decide to use it
because we think its safe and yet sufficient for our problem size. If you are dealing with much larger problem size and
have much more powerful GPU cards in hand, feel free to stretch this number to thousands even hundreds of thousand.
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CUDA IN TWO-DIMENSION

4.1 Acknowledgement

The examples used in this chapter are based on examples in Programming Massively Parallel Processors: A Hands-on
Approach, written by David B. Kirk and Wen-mei W. Hwu, and published by Morgan Kaufmann publishers.

Copyright 2010 David B. Kirk/NVIDIA Corporation and Wen-mei Hwu. Published by Elsevier Inc. All rights re-
served.

This copy of code is a derivative based on the original code and designed for educational purposes only. It contains
source code provided by the book above.

4.2 An Example of Matrix Multiplication

In this chapter, we will learn more about GPU computing on multi-dimensional problems and really experience the
advantage of GPU computing over CPU computing. Before we proceed to the next section, this section will introduce
a Matrix Multiplication program that is written in standard C and use only CPU for the computation. We hope the
result we obtain in this chapter can serve as a baseline for following sections and provide a clearer view on how fast
GPU computing can be.

CPU Matrix Multiplication Program source file: MM-CPU.c

4.2.1 Performance

We conducted 5 tests and the results are below.

• 1. 41045.35 ms

• 2. 40277.44 ms

• 3. 40369.30 ms

• 4. 40385.85 ms

• 5. 40446.14 ms

• Average: 40504.82 ms
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4.3 Global Memory Version

Starting from this example, we will look at the how to solve problem in two-dimensional domain using two-
dimensional grid and block. As we know, threads can be organized into multi-dimensional block and blocks can
also be organized into multi-dimensional grid. This feature in CUDA architecture enable us to create two-dimensional
or even three-dimensional thread hierarchy so that solving two or three-dimensional problems becomes easier and
more efficient.

In this example, we will do the Square Matrix Multiplication. Two input matrices of size Width x Width are M and N.
The output matrix is P with the same size. If you have learned linear algebra before, you will know that the output
of two square matrices multiplied together is a square matrix of the same size. For example, to calculate entry (A,B)
in the output matrix, we need to use row A in one input matrix and column B in another input matrix. We first take
the left most element in row A and multiply it by top element in column B. Later, we take the second left element in
row A and multiply it by second top element in column B. We do this for all the elements in row A and column B,
and then we get the sum of products. The result will be the value at entry (A,B) in the output matrix. As you can see,
this kind of operation is highly paralleled, make it perfect for us to use CUDA. We do this by assigning each entry in
output matrix a thread of its own. This thread will fetch the data and do all the calculations. It will later on write back
the result to the out put matrix.

Matrix Multiplication with Global Memory source file: MM-GPU-GM.cu

4.3.1 The Device Code

__global__ void Kernel(float *Md, float *Nd, float *Pd, int Width) {

// Calculate the column index of the Pd element, denote by x
int x = threadIdx.x + blockIdx.x * blockDim.x;
// Calculate the row index of the Pd element, denote by y
int y = threadIdx.y + blockIdx.y * blockDim.y;

float Pvalue = 0;
// each thread computes one element of the output matrix Pd.
for (int k = 0; k < Width; ++k) {
Pvalue += Md[y*Width + k] * Nd[k*Width + x];

}

// write back to the global memory
Pd[y*Width + x] = Pvalue;

}

This is the complete device code.

// Calculate the column index of the Pd element, denote by x
int x = threadIdx.x + blockIdx.x * blockDim.x;
// Calculate the row index of the Pd element, denote by y
int y = threadIdx.y + blockIdx.y * blockDim.y;

This 4 lines of code will assign index to the thread so that they can match up with entries in output matrix. As you
may notice, we introduced a new CUDA built-in variable blockDim into this code. blockDim has the variable type
of dim3, which is an 3-component integer vector type that is used to specify dimensions. This variable contains the
dimensions of the block, and we can access its component by calling blockDim.x, blockDim.y, blockdIM.z.

Each thread in one specific block is identified by threadIdx.x and threadIdx.y. Each block is one specific grid is
identified by blockIdx.x and blockIdx.y. Therefore, if we have threadIdx.x, threadIdx.y, blockIdx.x and blockIdx.y,
we can locate one specific thread.
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4.3.2 The Host Code

dim3 dimBlock(32, 32);
dim3 dimGrid(Width/32, Width/32);
Kernel<<<dimGrid, dimBlock>>>( Md, Nd, Pd, Width);

This 3 lines of code above is declaring and initializing dim3 variables which give the grid dimensions and block
dimensions. In each of the initializations, we only passed two parameters as components. The CUDA runtime will
initialize any component left unspecified to 1. So technically, we are initializing dimBlock as (32, 32, 1) and dimGrid
as (Width/32, Width/32, 1).

The rest of the host code is similar to examples we have seen before. Here is the complete version of the host code.

main(void){

void MatrixMultiplication(float *, float *, float *, int);

const int Width = 1024;

int size = Width * Width * sizeof(float);
float *M, *N, *P;

// allocate memory on the CPU
M = (float*)malloc(size);
N = (float*)malloc(size);
P = (float*)malloc(size);

// initialize the matrices
for (int y=0; y<Width; y++) {

for (int x=0; x<Width; x++){
M[y*Width + x] = x + y*Width;
N[y*Width + x] = x + y*Width;

}
}

MatrixMultiplication(M, N, P, Width);

// free the memory allocated on the CPU
free( M );
free( N );
free( P );

return 0;
}
void MatrixMultiplication(float *M, float *N, float *P, int Width) {

int size = Width * Width * sizeof(float);
float *Md, *Nd, *Pd;

// capture start time
cudaEvent_t start, stop;
HANDLE_ERROR( cudaEventCreate( &start ) );
HANDLE_ERROR( cudaEventCreate( &stop ) );
HANDLE_ERROR( cudaEventRecord( start, 0 ) );

// allocate memory on the GPU
HANDLE_ERROR( cudaMalloc((void**)&Md, size) );
HANDLE_ERROR( cudaMalloc((void**)&Nd, size) );
HANDLE_ERROR( cudaMalloc((void**)&Pd, size) );
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// transfer M and N to device memory
HANDLE_ERROR( cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice) );
HANDLE_ERROR( cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice) );

// kernel invocation code
dim3 dimBlock(32, 32);
dim3 dimGrid(Width/32, Width/32);
Kernel<<<dimGrid, dimBlock>>>( Md, Nd, Pd, Width);

// transfer P from device
HANDLE_ERROR( cudaMemcpy(P,Pd,size,cudaMemcpyDeviceToHost) );

// get stop time, and display the timing results
HANDLE_ERROR( cudaEventRecord( stop, 0 ) );
HANDLE_ERROR( cudaEventSynchronize( stop ) );
float elapsedTime;
HANDLE_ERROR( cudaEventElapsedTime( &elapsedTime,

start, stop ) );
printf( "Time to generate: %3.1f ms\n", elapsedTime );

// free the memory allocated on the GPU
HANDLE_ERROR( cudaFree(Md) );
HANDLE_ERROR( cudaFree(Nd) );
HANDLE_ERROR( cudaFree(Pd) );

// destroy events to free memory
HANDLE_ERROR( cudaEventDestroy( start ) );
HANDLE_ERROR( cudaEventDestroy( stop ) );

}

4.3.3 Performance

In the very top of the source file you can define the size of the matrix. Just change the Width definition to some
number you like. While testing the performance, we used 1024 as Width same as the number used in the CPU baseline
program. We conducted 5 tests and the results are below.

• 1. 52.5 ms

• 2. 52.4 ms

• 3. 52.4 ms

• 4. 52.4 ms

• 5. 52.6 ms

• average: 52.46 ms

Compared the CPU program, our GPU program is 772 times faster.

4.4 CUDA Memory Types

The reason CUDA architecture has many memory types is to increase the memory accessing speed so that data transfer
speed can match data processing speed. The following example will show you why matching these two speeds is so
important to GPU computation.
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One of the most important standards of a processor’s computation ability is its flops computation. We assume that
in order to perform one floating point operation, the runtime need to transfer one single-precision floating-point from
global memory datum to the computational kernel. With this in mind, we can proceed to our example.

The nVidia Tesla C2075 companion processor supports 144 gigabytes per second (GB/s) of global memory access
bandwidth. With 4 bytes in each single precision floating-point datum, we can load no more than 36 (144/4) giga single
precision data per second. Since the computational kernel cannot compute more floating-point than the amount global
memory has loaded, it will execute no more than 36 gigaflops per second. The actual kernel computational capability
of our tesla card is 1 teraflops (1000 gigaflops) per second, but due to limited memory accessing speed, we can
only achieve less than 4 percent of the actual speed. In other words, the highest achievable floating-point calculation
throughout is limited by the rate at which the input data can be transfered from global memory to computational kernel.

To address this problem, CUDA architecture designed several types of memory that could potentially speed up the
data loading process. We will see how use them in later examples. For now, we first need to know specifications of
different memory types.

Figure 4.1: This figure is from the website http://www.elsevierdirect.com/v2/companion.jsp?ISBN=9780123814722,
originally found in the book Programming Massively Parallel Processors: A Hands-on Approach.

There are in total 4 types of memory designed for GPU cards with CUDA architecture. Global memory, located in the
gird, has large storage capacity but limited speed, and can be read and write from all the blocks within CUDA system.
Shared memory, located in each block, has small storage capacity (16KB per block) but fast accessing speed, can be
read and write by all the threads within the located block. Constant memory, also located in the grid, has very small
storage capacity (64KB per GPU) but very fast accessing speed, and can read (can’t write) from any threads. There is
also local memory located in each thread.
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Table 4.1: CUDA Memory Types

Memory Scope of Access Lifetime R/W ability Speed Declaration
Register Thread Kernel R/W Fast Automatic Variables
Local Thread Kernel R/W Fast Automatic Arrays
Shared Block Kernel R/W Fast __shared__
Global Grid Host R/W Slow __device__
Constant Grid Host Read only Fast __constant__

4.5 Shared Memory Version

Matrix Multiplication with Shared Memory source file: MM-GPU-SM.cu

Why we need a shared memory version? We already seen hundreds of times speed improvement.

Well, to answer that question, we need to first look at the relationship between global memory and our program.
That is, in order to finish the matrix multiplication, how many times each element in matrix is accessed in the global
memory?

First, we have in total Width x Width many of threads and each thread computes one element of the output matrix.
Then, let’s take a closer look at each thread. For example, thread with the threadIdx of (x,y) will computes the element
in the x column and y row of the output matrix. In order to do this, thread (x,y) have to access elements in row x of
matrix M and elements in column y of matrix N. How about thread (x,y+1)? This time kernel will have to access row
x in matrix M again and a different column y+1 in matrix N. What about thread (x,y+2) or (x+1,y)? It is not hard for
you to find out that we accessed each row in matrix M the Width times and each column in matrix N the Width times
as well. If we can reduce the access time to once for every row in matrix M and once for every column in matrix N,
we can not only save bandwidth, but also increase performance significantly.

Notice that although we say we want the kernel to access each row in matrix M and each column in matrix N once
from global memory, we are not saying that the kernel access data once throughout the program. As we can see from
previous sections, global memory has large capacity but low access speed. What we want is to transfer data from
global memory to another type of memory which has fast access speed.

Note: The kernel still need to access every row and every column Width times in that memory location. However, as
we are accessing them in a faster memory location, the time takes for those data to load will be significantly reduced.
So technically we did not reduce the number of times each row or column was accessed, we simply made the speed of
accessing them faster.

Upon this point, it may occur to you that shared memory is the ideal candidate for such task for it can access data
faster than global memory. However, shared memory also has the drawback of small storage capacity. In the case of
matrix multiplication, we can’t just store the whole matrix into the shared memory. Remember that shared memory
only has 48kB storage space per block, which is not large enough for some gigantic matrices. We solve this problem
by managing shared memory in a dynamically way.

In the previous example, we assigned Width x Width many of threads for the computation where each thread will read
one row of input matrix M and one column of input matrix N and computes the corresponding element in output matrix
P. Although we use multiple blocks in a grid and multiple threads in a block, we don’t see how threads are cooperating
in the previous example. If we are allowed to assign infinite number of threads in one block, we can use just one block
for the previous example. In this example, however, we will instruct all threads within one block to cooperate.

In order to make the problem easier, we use two 4x4 matrices for illustration. We set the size of block as 2x2, which
in total has 4 threads. Therefore, the output matrix will have 4 blocks. As shown in the graph above, each element of
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Figure 4.2: This figure is from the website http://www.elsevierdirect.com/v2/companion.jsp?ISBN=9780123814722,
originally found in the book Programming Massively Parallel Processors: A Hands-on Approach.
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the output matrix is marked by Pd(x,y) where x is the column number and y is the row number. Lets take a look at the
block which has element Pd(0,0),Pd(1,0),Pd(0,1) and Pd(1,1).

As you can see from graph, to compute four elements in this block, we need not only to access the corresponding
block in input matrix M and input matrix N, but also the block to right of the corresponding block in matrix M and
the block below the corresponding block in matrix N. That is in total 4 blocks of data need to be loaded. What if the
maximum capacity of shared memory per block can only hold 2 blocks of data?

The solution is simple. All threads within a block can first collaborate together to load some portion of data from
global memory. This can be easily done by every thread in the block load one element from both input matrices
into shared memory. In our example, thread(0,0) loads Md(0,0) and Nd(0,0); thread(1,0) loads Md(1,0) and Nd(1,0);
thread(0,1) loads Md(0,1) and Nd(0,1); finally threads(1,1) loads Md(1,1) and Nd(1,1).Then we use these data to do
some computations in each thread even though this is enough to give the final results. We can always let each threads
to remember the running sum. After the computation, We can delete the data in shared memory because we do not
need them any more. Actually, you don’t even need to delete them, you can just load new data into it and old data will
be erased automatically.

Then we can load more data from global memory to shared memory. This time, however, we cannot have each thread
in the block load corresponding elements in input matrices. In our example, thread(0,0) loads Md(2,0) and Nd(0,2);
thread(1,0) loads Md(3,0) and Nd(1,2); thread(0,1) loads Md(2,1) and Nd(0,3); finally threads(1,1) loads Md(3,1) and
Nd(1,3). We can use this data for further computations. By the time we finished loading all the data to the shared
memory from global memory, all the threads would have final results in the running sums. This way, we can use
shared memory to increase the speed but not suffer from the limited storage capacity.

Figure 4.3: This figure is from the website http://www.elsevierdirect.com/v2/companion.jsp?ISBN=9780123814722,
originally found in the book Programming Massively Parallel Processors: A Hands-on Approach.

We call each data loading and computing process a phase. Therefore, in the previous example, we went through 2
phases before we have our final results. It is not hard to find out that by using shared memory, we can reduce the
number if times of accessing global memory from Width times for every column or row to Width/blockDim times.
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1756.50 Back to our problem, we are dealing with input matrices with the size of 1024 x 1024 and we are using blocks
with the size of 32 x 32. We can potentially reduce the global memory accessing time to 1/32 of the original.

4.5.1 The Device Code

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{

// declare cache in the shared memory
__shared__ float Mds[blockD][blockD];
__shared__ float Nds[blockD][blockD];

// keep track of column index of the Pd element using thread index
int x = threadIdx.x + blockIdx.x * blockDim.x; // x is column
// keep track of row index of the Pd element using thread index
int y = threadIdx.y + blockIdx.y * blockDim.y; // y is row

float Pvalue = 0;
// Loop over the Md and Nd block dimension required to compute the Pd element
for (int m = 0; m < Width/blockD; m++){

// collaboratively loading of Md and Nd blocks into shared memory
Mds[threadIdx.y][threadIdx.x] = Md[y * Width + (m * blockD + threadIdx.x)];
Nds[threadIdx.y][threadIdx.x] = Md[(m * blockD + threadIdx.y) * Width + x];
__syncthreads();

// keep track of the running sum
for (int k = 0; k < blockD; k++)

Pvalue += Mds[threadIdx.y][k] * Nds[k][threadIdx.x];
__syncthreads();

}

// write back to the global memory
Pd[y * Width + x] = Pvalue;

}

With all the explanations before, you should understand this device code easily.

If you are careful enough, you may see that I used a variable called blockD. This variable was defined at the very
beginning of the source code.

#define blockD 32

There are two thing you need to pay attention when defining this variable. First is that you should not assign this
variable with a number that is too big. This variable is used to define the dimension of each block. The reason we are
using block is to reduce the size of data transfer between global memory and shared memory every time. If you assign
too big a number to it, you are risking running out of share memory.

Another thing is that some of you might wonder why we are using blockD to represent block dimension instead of
using blockDim. Well, blockDim is a built-in function used by CUDA C, you can define blockDim as a constant in
here, but the built-in function will fail if you call it since you define a function equals a constant. The point I am trying
to make here is that be very careful when you are choosing your variable names. CUDA C, different from standard C,
has more built-in functions and you might bump into one or two while you are naming variables.

4.5.2 About blockDim and matrix dimension

Another thing needs mentioning is that while choosing the value of blockD, it is crucial for you to reference the matrix
dimension before you decide which number to assign to blockD. Different from the global memory version and CPU
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version, shared memory version requires threads within a block to work collaboratively to load part of the data to
shared memory each time. This means matrix’s dimension should be multiples of blockD so that threads in a block
can load same amount of data each time.

Further, recall that in the device code, we have expression like

for (int m = 0; m < Width/blockD; m++){

where we have Width divided by blockD. If you pick Width that is not dividable by blockD, program will return weird
thing because it expects a integer coming out of this line of code, instead of some floats.

As this program is using 1024 as Width, we picked 32 as the blockD value. If you use 1000 instead if 1024 for Width
and print out the result, you will see weird results. However, if you happen to have matrices with dimension of 1000,
you should use 25 instead of 32 as the blockD value.

4.5.3 The Host Code

main(void){

void MatrixMultiplication(float *, float *, float *, int);

const int Width = 1024;

int size = Width * Width * sizeof(float);
float *M, *N, *P;

// allocate memory on the CPU
M = (float*)malloc(size);
N = (float*)malloc(size);
P = (float*)malloc(size);

// initialize the matrices
for (int y=0; y<Width; y++) {

for (int x=0; x<Width; x++){
M[y*Width + x] = x + y*Width;

N[y*Width + x] = x + y*Width;
}

}

MatrixMultiplication(M, N, P, Width);

// free the memory allocated on the CPU
free( M );
free( N );
free( P );

return 0;
}
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{

// declare cache in the shared memory
__shared__ float Mds[blockD][blockD];
__shared__ float Nds[blockD][blockD];

// keep track of column index of the Pd element using thread index
int x = threadIdx.x + blockIdx.x * blockDim.x; // x is column
// keep track of row index of the Pd element using thread index
int y = threadIdx.y + blockIdx.y * blockDim.y; // y is row
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float Pvalue = 0;
// Loop over the Md and Nd block dimension required to compute the Pd element
for (int m = 0; m < Width/blockD; m++){

// collaboratively loading of Md and Nd blocks into shared memory
Mds[threadIdx.y][threadIdx.x] = Md[y * Width + (m * blockD + threadIdx.x)];
Nds[threadIdx.y][threadIdx.x] = Md[(m * blockD + threadIdx.y) * Width + x];
__syncthreads();

// keep track of the running sum
for (int k = 0; k < blockD; k++)

Pvalue += Mds[threadIdx.y][k] * Nds[k][threadIdx.x];
__syncthreads();

}

// write back to the global memory
Pd[y * Width + x] = Pvalue;

}

void MatrixMultiplication(float *M, float *N, float *P, int Width) {

int size = Width * Width * sizeof(float);
float *Md, *Nd, *Pd;

// capture start time
cudaEvent_t start, stop;
HANDLE_ERROR( cudaEventCreate( &start ) );
HANDLE_ERROR( cudaEventCreate( &stop ) );
HANDLE_ERROR( cudaEventRecord( start, 0 ) );

// allocate memory on the GPU
HANDLE_ERROR( cudaMalloc((void**)&Md, size) );
HANDLE_ERROR( cudaMalloc((void**)&Nd, size) );
HANDLE_ERROR( cudaMalloc((void**)&Pd, size) );

// transfer M and N to device memory
HANDLE_ERROR( cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice) );
HANDLE_ERROR( cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice) );

// kernel invocation code
dim3 dimBlock(blockD, blockD);
dim3 dimGrid(Width/blockD, Width/blockD);
MatrixMulKernel<<<dimGrid, dimBlock>>>( Md, Nd, Pd, Width);

// transfer P from device
HANDLE_ERROR( cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost) );

// get stop time, and display the timing results
HANDLE_ERROR( cudaEventRecord( stop, 0 ) );
HANDLE_ERROR( cudaEventSynchronize( stop ) );
float elapsedTime;
HANDLE_ERROR( cudaEventElapsedTime( &elapsedTime,

start, stop ) );
printf( "Time to generate: %3.1f ms\n", elapsedTime );

// free the memory allocated on the GPU
HANDLE_ERROR( cudaFree(Md) );
HANDLE_ERROR( cudaFree(Nd) );
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HANDLE_ERROR( cudaFree(Pd) );

// destroy events to free memory
HANDLE_ERROR( cudaEventDestroy( start ) );
HANDLE_ERROR( cudaEventDestroy( stop ) );

}

There is nothing worth mentioning in the host code because it is almost identical to what we had in the previous
example.

4.5.4 Performance

While testing the performance, we used 1024 as Width same as the number used in the CPU baseline program. We
conducted 5 tests and the results are below.

• 1. 24.4 ms

• 2. 24.2 ms

• 3. 24.3 ms

• 4. 24.4 ms

• 5. 24.4 ms

• Average: 24.34 ms

Compared the CPU program, our GPU program is 1664 times faster.
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FIVE

RAY TRACING AND CONSTANT
MEMORY

5.1 Acknowledgement

The examples used in this chapter are based on examples in CUDA BY EXAMPLE: An Introduction to General-
Purpose GPU Programming, written by Jason Sanders and Edward Kandrot, and published by Addison Wesley.

Copyright 1993-2010 NVIDIA Corporation. All rights reserved.

This copy of code is a derivative based on the original code and designed for educational purposes only. It contains
source code provided by NVIDIA Corporation.

5.2 Basics of Ray Tracing

First of all, what is ray tracing. Well, ray tracing is how you reflect a scene consisting three-dimensional objects on
a two dimensional image. This is similar to the games you play on your computer, except your games might use a
different method. However, the basic idea behind is the same.

How does ray tracing work? It is actually pretty simple. In the two-dimensional image, you place a imaginary camera
in there. Just like most real cameras, this imaginary camera contains light sensor as well. To produce a image, all we
have to do is determine what light would hit our camera. The camera, on the other hand, would automatically record
the color and light intensity of the ray hit it and produce exact same color and light intensity on the corresponding
pixel.

Furthermore, deciding which ray would hit the camera is painstaking. So our clever computer scientist came up with
an idea. Rather than deciding which ray would hit our camera, we can imagine shooting out a ray from our camera
into the scene consisting three-dimensional objects. In other words, our imaginary camera is acting as an eye and we
are now trying to find out what the eye is looking at. To seen what the eye is seeing, all we need to do is trace the ray
shot out from the camera until it hits an object in our three-dimensional scene. We then record the color of the object
and assign the color to the pixel. As you can see, most of the work in ray tracing is just deciding how the rays shot out
and the objects in the scene would interact.

5.3 Notes for Compile

Before this chapter, we use the following code to compile CUDA code.

> nvcc -o example_name example_name.cu

32

http://developer.nvidia.com/content/cuda-example-introduction-general-purpose-gpu-programming-0
http://developer.nvidia.com/content/cuda-example-introduction-general-purpose-gpu-programming-0
http://www.nvidia.com
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However, since we are using CUDA to produce images in this chapter, we need to use different code for compiling.
Shown as follow

> nvcc -lglut -o example_name example_name.c

5.4 Ray Tracing Without Constant Memory

In our example, we will create a scene with 20 random spheres. They are placed in a cube with dimension 1000 x
1000 x 1000. The center of the cube is at the origin. All the spheres are random in size, position as well as color. We
then place the camera on a random place on z-axis and fix it facing origin. Later on, all we need to do is to fire a ray
from each pixel and keep tracing it until it hits one of the objects. We also need to keep track of the depth of the ray.
Since one ray can hit more than one objects, we only need to record the nearest object and its color.

Ray Tracing Without Constant Memory source file: ray_noconst.cu

5.4.1 Structure Code

We first create a data structure Sphere. Just like standard C, you can also create data structures in CUDA C.

struct Sphere {

float r,b,g;// color of the sphere
float radius;
float x,y,z;// coordinate of the center

// will return the distance between imaginary camera and hit
__device__ float hit( float ox, float oy, float *n ) {

float dx = ox - x; // distance on x-axis
float dy = oy - y; // distance on y-axis
// if (dx*dx + dy*dy > radius*radius), ray will not hit sphere
if (dx*dx + dy*dy < radius*radius) {

float dz = sqrtf( radius*radius - dx*dx - dy*dy );
// n is used in visual effect

*n = dz / sqrtf( radius * radius );
return dz + z;

}
return -INF;

}
};

Inside the data structure, we stores the coordinate of the center of the Sphere as (x, y, z) and its color as (r, g, b). You
can see we also defined a method called hit. This method will decide whether the ray shot out from point (ox, oy) can
hit the Sphere defined in the structure or not. The basic idea is simple, you can think of we project the sphere on our
two-dimensional image. We first find out the distance between center of the Sphere and point (ox, oy) on the x-axis.
We then do the same thing on the y-axis. Using Pythagorean theorem, we can find out the distance between center of
the sphere and point (ox, oy). If this distance is less than radius, then we are sure about the ray hitting the sphere. We
then use this distance and the sphere’s coordinate on z-axis to find out the distance between point (ox, oy) and sphere.
On the other hand, it they don’t intersect, we will assign negative infinity as the distance.

You may also noticed two other things left unexplained here. First, you can see that we add a qualifier __device__
before the method definition.

__device__ float hit( float ox, float oy, float *n ) {

Well, the purpose of this qualifier is to tell the kernel that this method should executes on the device (our GPU) instead
of on the host (our CPU).
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Second, you may also find the following line intrigued.

*n = dz / sqrtf( radius * radius );

The value n is used to provide a better visual effect. You can see that we defined it as the percentage of distance
between point (ox, oy) and center of sphere out of the radius. We will add this value to later code so that you can see
center of the circle clearer while the edge of the sphere dimmer.

5.4.2 Device Code

__global__ void kernel( Sphere *s, unsigned char *ptr ) {

// map from threadIdx/BlockIdx to pixel position
int x = threadIdx.x + blockIdx.x * blockDim.x;
int y = threadIdx.y + blockIdx.y * blockDim.y;
// this is a linear offset into output buffer
int offset = x + y * blockDim.x * gridDim.x;

// shift the (x,y) image coordinate so that z-axis go through center
float ox = (x - DIM/2);
float oy = (y - DIM/2);

float r=0, g=0, b=0;// set the background to black
float maxz = -INF;
for(int i=0; i<SPHERES; i++) {

float n;
float t = s[i].hit( ox, oy, &n ); // return the distance
if (t > maxz) {

float fscale = n;// improve visual effect
r = s[i].r * fscale;
g = s[i].g * fscale;
b = s[i].b * fscale;
maxz = t; // update maxz everytime a smaller distance is found

}
}

// color the bitmap according to what the ray has ’seen’
ptr[offset*4 + 0] = (int)(r * 255);
ptr[offset*4 + 1] = (int)(g * 255);
ptr[offset*4 + 2] = (int)(b * 255);
ptr[offset*4 + 3] = 255;

}

On the GPU, we will assign each pixel a thread which is used for ray tracing computation. Therefore, in the first
several lines of code,

// map from threadIdx/BlockIdx to pixel position
int x = threadIdx.x + blockIdx.x * blockDim.x;
int y = threadIdx.y + blockIdx.y * blockDim.y;

we first need to map each thread’s threadIdx and blockIdx to the pixel position on the bitmap, which is represented by
(x, y). Then, we need to create a linear offset so that when the kernel is coloring the pixel, the kernel need to know
exactly which pixel it will color.

Then we shift image coordinate by DIM/2 on the x-axis and DIM/2 on the y-axis as well. We need to do this because
the center of the bitmap is not the origin. We need the center of the bitmap to match origin’s position so that the z-axis
can go through the center of image.
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// shift the (x,y) image coordinate so that z-axis go through center
float ox = (x - DIM/2);
float oy = (y - DIM/2);

After the preparations, we can start our ray tracing program. We first set the (r, g, b) values for each pixel to be 0.
We would have black background if the ray does not hit any object. Then we declare and initialize the variable maxz,
which would hold the nearest distance between the pixel and one of the objects. Later on, each thread will call the
method defined in the Sphere data structure. The method would use the (ox, oy) parameter passed by the thread to first
decide whether one object will intersect the ray or not and second decide the distance if they intersect. The method
will loop over all 20 spheres.

float fscale = n;// improve visual effect
r = s[i].r * fscale;
g = s[i].g * fscale;
b = s[i].b * fscale;

In the several lines of code above, you can see that we assign the actual (r, g, b) value according to the (r, g, b) value in
the structure. We also multiplied a constant fscale to it. When we see a sphere from above, the nearest point aligned
with your eye and the sphere center will be closer to you. On the other hand, the edge of the sphere will appear to be
a little bit far away. When we multiply fscale to the (r, g, b) values, what we are trying to do is to create this effect.

// color the bitmap according to what the ray has ’seen’
ptr[offset*4 + 0] = (int)(r * 255);
ptr[offset*4 + 1] = (int)(g * 255);
ptr[offset*4 + 2] = (int)(b * 255);
ptr[offset*4 + 3] = 255;

The last few line would be just color the the bitmap. Nothing needs to be clarified in these lines of code.

5.4.3 Host Code

int main( void ) {

// declare the data block and other needed variables
DataBlock data;
CPUBitmap bitmap( DIM, DIM, &data );
unsigned char *dev_bitmap;
Sphere *s;

// allocate temp memory for the Sphere dataset on CPU
Sphere *temp_s = (Sphere*)malloc( sizeof(Sphere) * SPHERES );

// initialize the Sphere dataset
for (int i=0; i<SPHERES; i++) {

temp_s[i].r = rnd( 1.0f );
temp_s[i].g = rnd( 1.0f );
temp_s[i].b = rnd( 1.0f );
temp_s[i].x = rnd( 1000.0f ) - 500;
temp_s[i].y = rnd( 1000.0f ) - 500;
temp_s[i].z = rnd( 1000.0f ) - 500;
temp_s[i].radius = rnd( 100.0f ) + 20;

}

// capture the start time
cudaEvent_t start, stop;
HANDLE_ERROR( cudaEventCreate( &start ) );
HANDLE_ERROR( cudaEventCreate( &stop ) );
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HANDLE_ERROR( cudaEventRecord( start, 0 ) );

// allocate memory on the GPU for the output bitmap
HANDLE_ERROR( cudaMalloc( (void**)&dev_bitmap, bitmap.image_size() ) );

// allocate memory for the Sphere dataset on GPU
HANDLE_ERROR( cudaMalloc( (void**)&s, sizeof(Sphere) * SPHERES ) );

// transfer the initialized Sphere dataset from CPU memory to GPU memory
HANDLE_ERROR( cudaMemcpy( s, temp_s, sizeof(Sphere) * SPHERES,

cudaMemcpyHostToDevice ) );

// generate a bitmap from our sphere data
dim3 grids(DIM/32,DIM/32);
dim3 threads(32,32);
kernel<<<grids,threads>>>( s, dev_bitmap );

// copy our bitmap back from the GPU for display
HANDLE_ERROR( cudaMemcpy( bitmap.get_ptr(), dev_bitmap,

bitmap.image_size(),
cudaMemcpyDeviceToHost ) );

// get stop time, and display the timing results
HANDLE_ERROR( cudaEventRecord( stop, 0 ) );
HANDLE_ERROR( cudaEventSynchronize( stop ) );
float elapsedTime;
HANDLE_ERROR( cudaEventElapsedTime( &elapsedTime,

start, stop ) );
printf( "Time to generate: %3.1f ms\n", elapsedTime );

// free CPU memory
free( temp_s );

// free GPU memory
HANDLE_ERROR( cudaEventDestroy( start ) );
HANDLE_ERROR( cudaEventDestroy( stop ) );

HANDLE_ERROR( cudaFree( dev_bitmap ) );
HANDLE_ERROR( cudaFree( s ) );

// display
bitmap.display_and_exit();

}

There is nothing worth mentioning about the host code. You first declare the data block and the variables. Then you
allocate memory on both CPU and GPU for those variables. Then you can initialize some variables, the 20 spheres in
this case on the CPU and then transfer them to the GPU memory. Later on you can call the kernel invocation code and
let GPU finish the hard work. Finally, you transfer the bitmap back to CPU and display the bitmap.

5.4.4 Performance

We conducted 5 tests and the results are below.

• 1. 6.7 ms

• 2. 6.8 ms

• 3. 6.8 ms
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Figure 5.1: A screenshot from the ray tracing example
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• 4. 6.7 ms

• 5. 6.8 ms

• Average: 6.76 ms

5.5 Constant Memory

We have mentioned that there are several types of memory in CUDA architecture. Till now, we have seen global
memory and shared memory. This time, we will explore the characteristics of constant memory.

By its name, constant memory is designed to store variables that will not change when the kernel is executing com-
mands. Constant memory is located in global memory, which means constant variables are stored in the global mem-
ory as well. However, constant variables are cached for higher access efficiency. Just like shared memory, there is
always price come with faster access speed. The CUDA architecture provides only 64KB of space for global memory.
Therefore, constant memory is not designed to store large dataset.

5.6 Ray Tracing With Constant Memory

In the example of ray tracing, we will see how to improve program efficiency by using constant memory. We do this
by store 20 sphere object in the constant memory for faster access. In our example, every pixel of the image needs
to access 20 sphere objects over the course of kernel execution. If we have a bitmap of the size 1024x1024, we are
looking at over one million times of access for each of the sphere.

Ray Tracing With Constant Memory source file: ray.cu

5.6.1 Constant Memory Declaration

__constant__ Sphere s[SPHERES]; // declare spheres in constant memory

This line of code shows you how to declare variables in constant memory. The only difference is that you have to add
__constant__ qualifier before the declaration.

5.6.2 Structure & Device Code

The device code and the code to create structure are exactly the same as the version not using constant memory.

5.6.3 Host Code

Most of the host code is the same as the version not using constant memory. There are only two different places.
First, since we have already prepared spaces in constant memory for Sphere dataset, we do not use the command
cudaMalloc() and cudaMemcpy() anymore to allocate it in global memory anymore. Second, we use the following
code to copy initialized Sphere dataset to the constant memory.

// transfer the initialized Sphere dataset to constant memory
HANDLE_ERROR( cudaMemcpyToSymbol( s, temp_s,

sizeof(Sphere) * SPHERES) );
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5.6.4 Performance

We conducted 5 tests and the results are below.

• 1. 6.2 ms

• 2. 6.1 ms

• 3. 6.3 ms

• 4. 6.4 ms

• 5. 6.4 ms

• Average: 6.28 ms

Due to the small bitmap size we are using, the improvement is not significant.
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